Verrucomicrobial Methanotrophs

  • Huub J. M. Op den CampEmail author
  • Sepehr S. Mohammadi
  • Arjan Pol
  • Peter F. Dunfield


The well-studied methanotrophic members of the Alpha- and Gammaproteobacteria have never been found in methane rich environments of extremely low pH. However, methane oxidation activity was detected in geothermal soils characterized by high temperatures (50–95 °C) and a pH as low as 1.0. From 2007 onward, the isolation of new aerobic acidophilic methane oxidizing bacteria from several acidic geothermal ecosystems was reported. They were all identified as new members of the Verrucomicrobia phylum and clustered in the genera Methylacidiphilum (thermophiles) and Methylacidimicrobium (mesophiles). This chapter reports on their discovery, biodiversity, genomics, metabolism, and biotechnological potential.


  1. Anvar SY, Frank J, Pol A et al (2014) The genomic landscape of the verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV. BMC Genomics 15:914CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arshad A, Speth D, de Graaf R et al (2015) A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like archaea. Front Microbiol 6:1423CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baani M, Liesack W (2008) Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SCZ. Proc Natl Acad Sci USA 105:10203–10208CrossRefPubMedGoogle Scholar
  4. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187CrossRefPubMedGoogle Scholar
  5. Brantner CA, Remsen CC, Owen HA et al (2002) Intracellular localization of the particulate methane monooxygenase and methanol dehydrogenase in Methylomicrobium album BG8. Arch Microbiol 178:59–64CrossRefPubMedGoogle Scholar
  6. Carere CR, Hards K, Houghton KM et al (2017) Mixotrophy drives niche expansion of verrucomicrobial methanotrophs. ISME J 11:2599–2610CrossRefPubMedPubMedCentralGoogle Scholar
  7. Castaldi S, Tedesco D (2005) Methane production and consumption in an active volcanic environment of Southern Italy. Chemosphere 58:131–139CrossRefPubMedGoogle Scholar
  8. Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME (2009) The expanding world of methylotrophic metabolism. Annu Rev Microbiol 63:477–499CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622CrossRefPubMedGoogle Scholar
  10. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1:285–292CrossRefPubMedGoogle Scholar
  11. Crowther GJ, Kosály G, Lidstrom ME (2008) Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1. J Bacteriol 190:5057–5062CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dedysh SN, Panikov NS, Liesack W et al (1998) Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands. Science 282:281–284CrossRefPubMedGoogle Scholar
  13. Dedysh SN, Liesack W, Khmelenina VN et al (2000) Methylocella palustris gen. nov., sp. nov., a new methane-oxidizing acidophilic bacterium from peat bags, representing a novel subtype of serine-pathway methanotrophs. Int J Syst Evol Microbiol 50:955–969CrossRefPubMedGoogle Scholar
  14. Dedysh SN, Khmelenina VN, Suzina NE et al (2002) Methylocapsa acidiphila gen. nov., sp. nov., a novel methane-oxidizing and dinitrogen-fixing acidophilic bacterium from Sphagnum bog. Int J Syst Evol Microbiol 52:251–261CrossRefPubMedGoogle Scholar
  15. Dedysh SN, Knief C, Dunfield PF (2005) Methylocella species are facultatively methanotrophic. J Bacteriol 187:4665–4670CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dunfield PF, Dedysh SN (2010) Acidic methanotrophic environments. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 2181–2192CrossRefGoogle Scholar
  17. Dunfield PF, Yuryev A, Senin P et al (2007) Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature 450:879–883CrossRefPubMedGoogle Scholar
  18. Egger M, Rasigraf O, Sapart CJ et al (2015) Iron-mediated anaerobic oxidation of methane in brackish coastal sediments. Environ Sci Technol 49:277–283CrossRefPubMedGoogle Scholar
  19. Erikstad HA, Jensen S, Keen TJ et al (2012) Differential expression of particulate methane monooxygenase genes in the verrucomicrobial methanotroph ‘Methylacidiphilum kamchatkense’ Kam1. Extremophiles 16:405–409CrossRefPubMedGoogle Scholar
  20. Erikstad HA, Birkeland NK (2015) Draft genome sequence of “Candidatus Methylacidiphilum kamchatkense” strain Kam1, a thermoacidophilic methanotrophic Verrucomicrobium. Genome Announc 3:e00065-15CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eshinimaev BT, Khmelenina VN, Sakharovskiĭ VG et al (2002) Physiological, biochemical, and cytological characteristics of a haloalkalitolerant methanotroph grown on methanol. Microbiology 71:512–518CrossRefGoogle Scholar
  22. Etiope G, Klusman RW (2002) Geologic emissions of methane to the atmosphere. Chemosphere 49:777–789CrossRefPubMedGoogle Scholar
  23. Etiope G, Oehler DZ, Allen CC (2011) Methane emissions from Earth’s degassing: implications for Mars. Planet Space Sci 59:182–195CrossRefGoogle Scholar
  24. Ettwig KF, Shima S, van de Pas-Schoonen KT et al (2008) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10:3164–3173CrossRefPubMedGoogle Scholar
  25. Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S et al (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, UK, pp 129–234Google Scholar
  26. Gagliano AL, D’Alessandro W, Tagliavia M et al (2014) Methanotrophic activity and diversity of methanotrophs in volcanic geothermal soils at Pantelleria (Italy). Biogeosciences 11:5865–5875CrossRefGoogle Scholar
  27. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60:439–471PubMedPubMedCentralGoogle Scholar
  28. Haroon MF, Hu S, Shi Y et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570CrossRefPubMedGoogle Scholar
  29. Hettiarachchi V, Hettiaratchi P (2011) Field-scale operation of methane biofiltration systems to mitigate point source methane emissions. Environ Pollut 159:1715–1720CrossRefPubMedGoogle Scholar
  30. Heyer J, Berger U, Hardt M, Dunfield PF (2005) Methylohalobius crimeensis gen. nov., sp. nov., a moderately halophilic, methanotrophic bacterium isolated from hypersaline lakes of Crimea. Int J Syst Evol Microbiol 55:1817–1826CrossRefPubMedGoogle Scholar
  31. Hou S, Makarova KS, Saw JH et al (2008) Complete genome sequence of the extremely acidophilic methanotroph isolate V4, Methylacidiphilum infernorum, a representative of the bacterial phylum Verrucomicrobia. Biol Direct 3:26CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774PubMedPubMedCentralGoogle Scholar
  33. Iguchi H, Yurimoto H, Sakai Y (2011) Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil. Int J Syst Evol Microbiol 61:810–815CrossRefPubMedGoogle Scholar
  34. Islam T, Jensen S, Reigstad LJ et al (2008) Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proc Natl Acad Sci USA 105:300–304CrossRefPubMedGoogle Scholar
  35. Jacob DJ (1999) Introduction to atmospheric chemistry. Princeton University Press, Princeton, USA. isbn:0-691-00185-5Google Scholar
  36. Keltjens JT, Pol A, Reimann J et al (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl Microbiol Biotechnol 98:6163–6183CrossRefPubMedGoogle Scholar
  37. Khadem AF, Pol A, Jetten MSM et al (2010) Nitrogen fixation by the verrucomicrobial methanotroph “Methylacidiphilum fumariolicum” SolV. Microbiology 156:1052–1059CrossRefPubMedGoogle Scholar
  38. Khadem AF, Pol A, Wieczorek A et al (2011) Autotrophic methanotrophy in verrucomicrobia: Methylacidiphilum fumariolicum SolV uses the Calvin-Benson-Bassham cycle for carbon dioxide fixation. J Bacteriol 193:4438–4446CrossRefPubMedPubMedCentralGoogle Scholar
  39. Khadem AF, Pol A, Wieczorek A et al (2012a) Metabolic regulation of “Ca. Methylacidiphilum fumariolicum” SolV cells grown under different nitrogen and oxygen limitations. Front Microbiol 3:266PubMedPubMedCentralGoogle Scholar
  40. Khadem AF, van Teeseling MC, van Niftrik L et al (2012b) Genomic and physiological analysis of carbon storage in the verrucomicrobial methanotroph “Ca. Methylacidiphilum fumariolicum” SolV. Front Microbiol 3:345PubMedPubMedCentralGoogle Scholar
  41. Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334CrossRefPubMedGoogle Scholar
  42. Kozubal MA, Macur RE, Jay ZJ et al (2012) Microbial iron cycling in acidic geothermal springs of Yellowstone National Park: integrating molecular surveys, geochemical processes, and isolation of novel Fe-active microorganisms. Front Microbiol 3:109CrossRefPubMedPubMedCentralGoogle Scholar
  43. Li J, Peng X, Zhang L et al (2016) Linking microbial community structure to S, N and Fe biogeochemical cycling in the hot springs at the Tengchong geothermal fields, Southwest China. Geomicrobiol J 33:135–150CrossRefGoogle Scholar
  44. Linton JD, Cripps RE (1978) Occurrence and identification of intracellular polyglucose storage granules in Methylococcus NCBI 11083 grown in chemostat culture on methane. Arch Microbiol 117:41–48CrossRefPubMedGoogle Scholar
  45. Milucka J, Ferdelman TG, Polerecky L et al (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546CrossRefPubMedGoogle Scholar
  46. Mohammadi S, Pol A, van Alen TA (2017) Methylacidiphilum fumariolicum SolV, a thermoacidophilic ‘Knallgas’ methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME J 11:945–958CrossRefPubMedGoogle Scholar
  47. Moss A, Jouany JP, Newbold J (2000) Methane production by ruminants: its contribution to global warming. Ann Zootech 49:231–253CrossRefGoogle Scholar
  48. Nguyen HH, Elliott SJ, Yip JH et al (1998) The particulate methane monooxygenase from Methylococcus capsulatus (Bath) is a novel copper-containing three-subunit enzyme. J Biol Chem 273:7957–7966CrossRefPubMedGoogle Scholar
  49. Op den Camp HJM, Islam T, Stott MB et al (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep 1:293–306CrossRefGoogle Scholar
  50. Pagaling E, Yang K, Yan T (2014) Pyrosequencing reveals correlations between extremely acidophilic bacterial communities with hydrogen sulphide concentrations, pH and inert polymer coatings at concrete sewer crown surfaces. J Appl Bacteriol 117:50–64CrossRefGoogle Scholar
  51. Pieja AJ et al (2011a) Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic Proteobacteria. Microb Ecol 62:564–573CrossRefPubMedGoogle Scholar
  52. Pieja AJ et al (2011b) Poly-3-hydroxybutyrate metabolism in the Type II methanotroph Methylocystis parvus OBBP. Appl Environ Microbiol 77:6012–6019CrossRefPubMedPubMedCentralGoogle Scholar
  53. Pol A, Heijmans K, Harhangi HR et al (2007) Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature 450:874–878CrossRefPubMedGoogle Scholar
  54. Pol A, Barends TR, Dietl A et al (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ Microbiol 16:255–264CrossRefPubMedGoogle Scholar
  55. Raghoebarsing AA, Pol A, van de Pas-Schoonen KT et al (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921CrossRefPubMedGoogle Scholar
  56. Rasigraf O, Kool DM, Jetten MSM et al (2014) Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph “Candidatus Methylomirabilis oxyfera”. Appl Environ Microbiol 80:2451–2460CrossRefPubMedPubMedCentralGoogle Scholar
  57. Scheller S, Yu H, Chadwick GL et al (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707CrossRefPubMedGoogle Scholar
  58. Sharp CE, Stott MB, Dunfield PF (2012) Detection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing. Front Microbiol 3:303CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sharp CE, den Camp HJM O, Tamas I et al (2013) Unusual members of the PVC superphylum: the methanotrophic Verrucomicrobia genus “Methylacidiphilum”. In: Fuerst JA (ed) Planctomycetes: cell structure, origins and biology. Springer-Verlag, Berlin, pp 211–227CrossRefGoogle Scholar
  60. Sharp CE, Smirnova AV, Graham JM et al (2014) Distribution and diversity of Verrucomicrobia methanotrophs in geothermal and acidic environments. Environ Microbiol 16:1867–1878CrossRefPubMedGoogle Scholar
  61. Šmejkalová H, Erb TJ, Fuchs G (2010) Methanol assimilation in Methylobacterium extorquens AM1: demonstration of all enzymes and their regulation. PLoS One 5:e13001CrossRefPubMedPubMedCentralGoogle Scholar
  62. Strong PJ, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018CrossRefPubMedGoogle Scholar
  63. Tavormina PL, Orphan VJ, Kalyuzhnaya MG et al (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ Microbiol Rep 3:91–100CrossRefPubMedGoogle Scholar
  64. Tchawa Yimga M, Dunfield PF, Ricke P et al (2003) Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl Environ Microbiol 69:5593–5602CrossRefPubMedPubMedCentralGoogle Scholar
  65. Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406CrossRefPubMedGoogle Scholar
  66. van Teeseling MCF, Pol A, Harhangi HR et al (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov. Appl Environ Microbiol 80:6782–6791CrossRefPubMedPubMedCentralGoogle Scholar
  67. Vekeman B, Kerckhof FM, Cremers G et al (2016) New Methyloceanibacter diversity from North Sea sediments includes methanotroph containing solely the soluble methane monooxygenase. Environ Microbiol 18:4523–4536CrossRefPubMedGoogle Scholar
  68. Vernikos GS, Parkhill J (2006) Interpolated variable order motifs for identification of horizontally acquired DNA: revisiting the Salmonella pathogenicity islands. Bioinformatics 22:2196–2203CrossRefPubMedGoogle Scholar
  69. Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relevance. Curr Opin Biotechnol 17:241–249CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Huub J. M. Op den Camp
    • 1
    Email author
  • Sepehr S. Mohammadi
    • 1
  • Arjan Pol
    • 1
  • Peter F. Dunfield
    • 2
  1. 1.Department of Microbiology, IWWRRadboud UniversityNijmegenThe Netherlands
  2. 2.Department of Biological SciencesUniversity of CalgaryCalgaryCanada

Personalised recommendations