Advertisement

Mixed Methanotrophic Consortium for Applications in Environmental Bioengineering and Biocatalysis

  • Hao Jiang
  • Xin-Hui Xing
Chapter

Abstract

A mixed methanotrophic consortium (MMC) is generally considered to be a complex mixed culture system where methanotrophs predominate and coexist with other microorganisms. MMCs not only have the unique characteristics of methanotrophs like methane assimilation and broad substrate range but also can overcome the shortcomings in pure methanotrophic cultivation like slow growth rate, difficulty in growing high cell density, and poor MMO stability, indicating their promising prospects in environmental bioengineering and biocatalysis. This chapter focuses on the acquisition of MMCs, interactions among methanotrophs and their coexisting heterotrophs, and recent highlights on theoretical research and engineering trials. MMCs can be obtained through enrichment culture from methane-rich environments, mixing different methanotrophs together or stimulating the indigenous methane-oxidizing bacteria for in situ applications. Large-scale and rapid preparation and long-term preservation of MMCs with stable function and community structure are achievable by appropriate methods. Methanotrophs and the coexisting heterotrophs in MMCs can exchange metabolites and also interact with each other via more complex metabolisms and synergic effects, forming a huge, multi-role, and dynamic ecological network. In environmental bioengineering, applying MMCs in methane mitigation and co-metabolism of contaminants are more promising. Single cell protein is a useful bioproduct capable of being produced by MMCs, and biopolymer like PHB by MMCs also has bright prospect. Combined with other functional systems and exploration of biological dark matter of a consortium, MMCs can greatly expand the application fields. With the advances in multi-omic analysis of methanotrophs and the development of synthetic biology and ecoinformatics, more achievements for MMCs can be expected.

Abbreviations

1,1-DCE

1,1-dichloroethylene

AME-D

aerobic methane oxidation coupled to denitrification

BTZ

benzotriazole

cDCE

cis-l,2-dichloroethylene

CSTR

continuous stirred tank reactor

DMSO

dimethyl sulfoxide

DO

dissolved oxygen

DW

dry weight

HCFCs

hydrochlorofluorocarbons

HFCs

hydrofluorocarbons

LAS

alkylbenzene sulfonate

MMC

mixed methanotrophic consortium

MMCs

mixed methanotrophic consortia

MMO

methane monooxygenase

MOB

methane-oxidizing bacteria

MOC

methane oxidation capacity

NMS

nitrate mineral salt

PFR

plug flow reactor

PHA

polyhydroxyalkanoate

PHB

polyhydroxybutyrate

pMMO

particulate methane monooxygenase

RuMP

ribulose monophosphate

SCP

single cell protein

sMMO

soluble methane monooxygenase

SMX

sulfamethoxazole

TCE

trichloroethylene

t-DCE

trans-1,2-dichloroethylene

TT

trehalose and tryptic soy broth

VC

vinyl chloride

VSS

volatile suspended solids

References

  1. Anderson JE, McCarty PL (1997) Transformation yields of chlorinated ethenes by a methanotrophic mixed culture expressing particulate methane monooxygenase. Appl Environ Microb 63(2):687–693Google Scholar
  2. Benner J, De Smet D, Ho A, Kerckhof F-M, Vanhaecke L, Heylen K, Boon N (2015) Exploring methane-oxidizing communities for the co-metabolic degradation of organic micropollutants. Appl Microbiol Biotechnol 99(8):3609–3618CrossRefPubMedGoogle Scholar
  3. Bothe H, Jensen KM, Mergel A, Larsen J, Jørgensen C, Bothe H, Jørgensen L (2002) Heterotrophic bacteria growing in association with Methylococcus capsulatus (Bath) in a single cell protein production process. Appl Microbiol Biotechnol 59(1):33–39CrossRefPubMedGoogle Scholar
  4. Cappelletti M, Frascari D, Zannoni D, Fedi S (2012) Microbial degradation of chloroform. Appl Microbiol Biotechnol 96(6):1395–1409CrossRefPubMedGoogle Scholar
  5. Chang H-L, Alvarez-Cohen L (1997) Two-stage methanotrophic bioreactor for the treatment of chlorinated organic wastewater. Water Res 31(8):2026–2036CrossRefGoogle Scholar
  6. Chang W-K, Criddle CS (1995) Biotransformation of HCFC-22, HCFC-142b, HCFC-123, and HFC-134a by methanotrophic mixed culture MM1. Biodegradation 6(1):1–9CrossRefGoogle Scholar
  7. Chidambarampadmavathy K, Karthikeyan O, Huerlimann R, Maes G, Heimann K (2016) Response of mixed methanotrophic consortia to different methane to oxygen ratios. Waste Manag 61:220–228.  https://doi.org/10.1016/j.wasman.2016.11.007CrossRefPubMedGoogle Scholar
  8. Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2015) Biopolymers made from methane in bioreactors. Eng Life Sci 15(7):689–699CrossRefGoogle Scholar
  9. Chiemchaisri C, Chiemchaisri W, Kumar S, Wicramarachchi PN (2012) Reduction of methane emission from landfill through microbial activities in cover soil: a brief review. Crit Rev Environ Sci Technol 42(4):412–434CrossRefGoogle Scholar
  10. Conrad ME, Brodie EL, Radtke CW, Bill M, Delwiche ME, Lee MH, Swift DL, Colwell FS (2010) Field evidence for co-metabolism of trichloroethene stimulated by addition of electron donor to groundwater. Environ Sci Technol 44(12):4697–4704CrossRefPubMedGoogle Scholar
  11. Conrad R (2007) Microbial ecology of methanogens and methanotrophs. Adv Agron 96:1–63CrossRefGoogle Scholar
  12. Eguchi M, Kitagawa M, Suzuki Y, Nakamuara M, Kawai T, Okamura K, Sasaki S, Miyake Y (2001) A field evaluation of in situ biodegradation of trichloroethylene through methane injection. Water Res 35(9):2145–2152CrossRefPubMedGoogle Scholar
  13. Guiot SR, Cimpoia R, Kuhn R, Alaplantive A (2008) Electrolytic methanogenic−methanotrophic coupling for tetrachloroethylene bioremediation: proof of concept. Environ Sci Technol 42(8):3011–3017CrossRefPubMedGoogle Scholar
  14. Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol Rev 60(2):439–471PubMedPubMedCentralGoogle Scholar
  15. Helm J, Wendlandt KD, Rogge G, Kappelmeyer U (2006) Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system. J Appl Microbiol 101(2):387–395CrossRefPubMedGoogle Scholar
  16. Henckel T, Roslev P, Conrad R (2000) Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ Microbiol 2(6):666–679CrossRefPubMedGoogle Scholar
  17. Ho A, De Roy K, Thas O, De Neve J, Hoefman S, Vandamme P, Heylen K, Boon N (2014) The more, the merrier: heterotroph richness stimulates methanotrophic activity. ISME J 8(9):1945–1948CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ho A, Kerckhof FM, Luke C, Reim A, Krause S, Boon N, Bodelier PL (2013) Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Env Microbiol Rep 5(3):335–345CrossRefGoogle Scholar
  19. Hršak D, Begonja A (2000) Possible interactions within a methanotrophic-heterotrophic groundwater community able to transform linear alkylbenzene sulfonates. Appl Environ Microb 66(10):4433–4439CrossRefGoogle Scholar
  20. Huber-Humer M, Gebert J, Hilger H (2008) Biotic systems to mitigate landfill methane emissions. Waste Manage Res 26(1):33–46CrossRefGoogle Scholar
  21. Iguchi H, Yurimoto H, Sakai Y (2011) Stimulation of methanotrophic growth in cocultures by cobalamin excreted by rhizobia. Appl Environ Microb 77(24):8509–8515CrossRefGoogle Scholar
  22. Jiang H, Chen Y, Jiang P, Zhang C, Smith TJ, Murrell JC, Xing XH (2010) Methanotrophs: multifunctional bacteria with promising applications in environmental bioengineering. Biochem Eng J 49(3):277–288CrossRefGoogle Scholar
  23. Jiang H, Duan C, Jiang P, Liu M, Luo M, Xing X-H (2016a) Characteristics of scale-up fermentation of mixed methane-oxidizing bacteria. Biochem Eng J 109:112–117CrossRefGoogle Scholar
  24. Jiang H, Duan C, Luo M, Xing X-H (2016b) Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine. Appl Microbiol Biotechnol 100(24):10331–10341CrossRefPubMedGoogle Scholar
  25. Jiang H, Gou ZX, Han B, Xing XH (2014) Study on preservation methods of mixed methane-oxidizing bacteria. Microbiology China 41:1463–1469Google Scholar
  26. Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152CrossRefPubMedGoogle Scholar
  27. Karthikeyan OP, Chidambarampadmavathy K, Cirés S, Heimann K (2015) Review of sustainable methane mitigation and biopolymer production. Crit Rev Environ Sci Technol 45(15):1579–1610CrossRefGoogle Scholar
  28. Karthikeyan OP, Saravanan N, Cirés S, Alvarez-Roa C, Razaghi A, Chidambarampadmavathy K, Velu C, Subashchandrabose G, Heimann K (2016) Culture scale-up and immobilisation of a mixed methanotrophic consortium for methane remediation in pilot-scale bio-filters. Environ Technol 38(4):474–482.  https://doi.org/10.1080/09593330.2016.1198424CrossRefPubMedGoogle Scholar
  29. Kerckhof F-M, Courtens EN, Geirnaert A, Hoefman S, Ho A, Vilchez-Vargas R, Pieper DH, Jauregui R, Vlaeminck SE, Van de Wiele T (2014) Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 9(6):e99517CrossRefPubMedPubMedCentralGoogle Scholar
  30. Khosravi-Darani K, Mokhtari Z-B, Amai T, Tanaka K (2013) Microbial production of poly (hydroxybutyrate) from C1 carbon sources. Appl Microbiol Biotechnol 97(4):1407–1424CrossRefPubMedGoogle Scholar
  31. Levett I, Birkett G, Davies N, Bell A, Langford A, Laycock B, Lant P, Pratt S (2016) Techno-economic assessment of poly-3-hydroxybutyrate (PHB) production from methane—the case for thermophilic bioprocessing. J Environ Chem Eng 4(4):3724–3733CrossRefGoogle Scholar
  32. Liebner S, Zeyer J, Wagner D, Schubert C, Pfeiffer EM, Knoblauch C (2011) Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra. J Ecol 99(4):914–922CrossRefGoogle Scholar
  33. Michener WK, Jones MB (2012) Ecoinformatics: supporting ecology as a data-intensive science. Trends Ecol Evol 27(2):85–93CrossRefPubMedGoogle Scholar
  34. Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK (2013) Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ Microbiol 15(9):2395–2417CrossRefPubMedGoogle Scholar
  35. Nikiema J, Brzezinski R, Heitz M (2007) Elimination of methane generated from landfills by biofiltration: a review. Rev Environ Sci Biotechnol 6(4):261–284CrossRefGoogle Scholar
  36. Pandey VC, Singh JS, Singh D, Singh RP (2014) Methanotrophs: promising bacteria for environmental remediation. Int J Environ Sci Technol 11(1):241–250CrossRefGoogle Scholar
  37. Pfluger AR, Wu W-M, Pieja AJ, Wan J, Rostkowski KH, Criddle CS (2011) Selection of Type I and Type II methanotrophic proteobacteria in a fluidized bed reactor under non-sterile conditions. Bioresource Technol 102(21):9919–9926CrossRefGoogle Scholar
  38. Pieja AJ, Sundstrom ER, Criddle CS (2012) Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community. Bioresource Technol 107:385–392CrossRefGoogle Scholar
  39. Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Bio 13(1):79–107CrossRefGoogle Scholar
  40. Scheutz C, Bogner J, De Visscher A, Gebert J, Hilger H, Huber-Humer M, Kjeldsen P, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage Res 27(5):409–455CrossRefGoogle Scholar
  41. Semrau JD, DiSpirito AA, Vuilleumier S (2011) Facultative methanotrophy: false leads, true results, and suggestions for future research. FEMS Microbiol Lett 323(1):1–12CrossRefPubMedGoogle Scholar
  42. Semrau JD, DiSpirito AA, Yoon S (2010) Methanotrophs and copper. FEMS Microbiol Rev 34(4):496–531CrossRefPubMedGoogle Scholar
  43. Shukla AK, Singh R, Upadhyay S, Dubey SK (2010) Kinetics of bio-filtration of trichloroethylene by methanotrophs in presence of methanol. Bioresource Technol 101(21):8119–8126CrossRefGoogle Scholar
  44. Smith LH, McCarty PL (1997) Laboratory evaluation of a two-stage treatment system for TCE cometabolism by a methane-oxidizing mixed culture. Biotechnol Bioeng 55(4):650–659CrossRefPubMedGoogle Scholar
  45. Stock M, Hoefman S, Kerckhof F-M, Boon N, De Vos P, De Baets B, Heylen K, Waegeman W (2013) Exploration and prediction of interactions between methanotrophs and heterotrophs. Res Microbiol 164(10):1045–1054CrossRefPubMedGoogle Scholar
  46. Strong P, Xie S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49(7):4001–4018CrossRefPubMedGoogle Scholar
  47. Strong PJ, Laycock B, Mahamud SNS, Jensen PD, Lant PA, Tyson G, Pratt S (2016) The opportunity for high-performance biomaterials from methane. Microorganisms 4(1).  https://doi.org/10.3390/microorganisms4010011CrossRefPubMedCentralGoogle Scholar
  48. Sun F-Y, Dong W-Y, Shao M-F, Lv X-M, Li J, Peng L-Y, Wang H-J (2013) Aerobic methane oxidation coupled to denitrification in a membrane biofilm reactor: treatment performance and the effect of oxygen ventilation. Bioresource Technol 145:2–9CrossRefGoogle Scholar
  49. Tartakovsky B, Manuel M-F, Guiot S (2003) Trichloroethylene degradation in a coupled anaerobic/aerobic reactor oxygenated using hydrogen peroxide. Environ Sci Technol 37(24):5823–5828CrossRefPubMedGoogle Scholar
  50. Tiehm A, Schmidt KR (2011) Sequential anaerobic/aerobic biodegradation of chloroethenes-aspects of field application. Curr Opin Biotech 22(3):415–421CrossRefPubMedGoogle Scholar
  51. Trotsenko YA, Khmelenina VN (2002) Biology of extremophilic and extremotolerant methanotrophs. Arch Microbiol 177(2):123–131CrossRefPubMedGoogle Scholar
  52. Trotsenko YA, Murrell JC (2008) Metabolic aspects of aerobic obligate methanotrophy. Adv Appl Microbiol 63:183–229CrossRefPubMedGoogle Scholar
  53. Unibio (2016) http://www.unibio.dk/
  54. Van der Ha D, Bundervoet B, Verstraete W, Boon N (2011) A sustainable, carbon neutral methane oxidation by a partnership of methane oxidizing communities and microalgae. Water Res 45(9):2845–2854CrossRefPubMedGoogle Scholar
  55. van der Ha D, Hoefman S, Boeckx P, Verstraete W, Boon N (2010) Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biotechnol 87(6):2355–2363CrossRefPubMedGoogle Scholar
  56. van der Ha D, Nachtergaele L, Kerckhof F-M, Rameiyanti D, Bossier P, Verstraete W, Boon N (2012) Conversion of biogas to bioproducts by algae and methane oxidizing bacteria. Environ Sci Technol 46(24):13425–13431CrossRefPubMedGoogle Scholar
  57. Wendlandt KD, Jechorek M, Helm J, Stottmeister U (2001) Producing poly-3-hydroxybutyrate with a high molecular mass from methane. J Biotechnol 86(2):127–133CrossRefPubMedGoogle Scholar
  58. Wendlandt KD, Stottmeister U, Helm J, Soltmann B, Jechorek M, Beck M (2010) The potential of methane-oxidizing bacteria for applications in environmental biotechnology. Eng Life Sci 10(2):87–102Google Scholar
  59. Whittenbury R, Phillips K, Wilkinson J (1970) Enrichment, isolation and some properties of methane-utilizing bacteria. Microbiology 61(2):205–218Google Scholar
  60. Zhang Y, Xin J, Chen L, Xia C (2009) The methane monooxygenase intrinsic activity of kinds of methanotrophs. Appl Biochem Biotechnol 157(3):431–441CrossRefPubMedGoogle Scholar
  61. Zhu J, Wang Q, Yuan M, Tan G-YA, Sun F, Wang C, Wu W, Lee P-H (2016) Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: a review. Water Res 90:203–215CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hao Jiang
    • 1
  • Xin-Hui Xing
    • 2
  1. 1.Institute of New EnergyChina University of PetroleumBeijingChina
  2. 2.MOE Key Lab of Industrial Biocatalysis, Department of Chemical Engineering, Centre for Synthetic and Systems BiologyTsinghua UniversityBeijingChina

Personalised recommendations