Advertisement

The Biochemistry and Physiology of Respiratory-Driven Reversed Methanogenesis

  • Hadi Nazem-Bokaee
  • Zhen Yan
  • Costas D. Maranas
  • James G. Ferry
Chapter

Abstract

In situ ecological and metagenomic investigations have provided a wealth of information setting the stage for advanced mechanistic understanding of the anaerobic oxidation of methane (AOM). These studies infer that anaerobic methylotrophic (ANME) species of the domain Archaea are capable of growth by reducing electron acceptors such as Fe(III) and nitrate. However, the unavailability of axenic cultures has impeded a mechanistic understanding of nitrate-dependent AOM. Nonetheless, the reconstructed genomes from nitrate-reducing AOM environments predict pathways consistent with reversal of methanogenic pathways. The methane-producing archaeon Methanosarcina acetivorans is capable of AOM dependent on reduction of Fe(III) for which a pathway is proposed. The pathway is consistent with the reversal of methanogenesis pathways deduced from the reconstructed genomes derived from metagenomes of environments where Fe(III)-dependent ANME are expected. Roles are indicated for electron bifurcation by HdrABC family enzymes and the Rnf complex which appears to be a universal requirement for energy conservation during AOM. An updated genome-scale metabolic model of M. acetivorans correctly captures the observed energy requirements and electron flow mechanism during AOM and predicts the interplay between Fe(III) availability and the partitioning of the incoming carbon flux from methane into acetate and carbon dioxide. The model also predicts a plausible switching mechanism for ATP production between chemiosmotic and substrate-level phosphorylations depending on the availability of Fe(III).

Notes

Acknowledgments

Research in the laboratories of CDM and JGF was supported by the US Department of Energy ARPA-e grant 0881-1525.

References

  1. Aceti DJ, Ferry JG (1988) Purification and characterization of acetate kinase from acetate-grown Methanosarcina thermophila. J Biol Chem 263:15444–15448PubMedGoogle Scholar
  2. Arshad A et al (2015) A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by Methanoperedens-like Archaea. Front Microbiol 6:1423.  https://doi.org/10.3389/fmicb.2015.01423CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325(5937):184–187CrossRefPubMedGoogle Scholar
  4. Beifuss U, Tietze M (2005) Methanophenazine and other natural biologically active phenazines. In: Mulzer J (ed) Natural products synthesis I: targets, methods, concepts. Springer, Berlin, pp 77–113Google Scholar
  5. Benedict MN et al (2012) Genome-scale metabolic reconstruction and hypothesis testing in the methanogenic archaeon Methanosarcina acetivorans C2A. J Bacteriol 194(4):855–865CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bond DR, Lovley DR (2002) Reduction of Fe(III) oxide by methanogens in the presence and absence of extracellular quinones. Environ Microbiol 4(2):115–124CrossRefPubMedGoogle Scholar
  7. Clomburg JM, Crumbley AM, Gonzalez R (2017) Industrial biomanufacturing: the future of chemical production. Science 355(6320):1–10CrossRefGoogle Scholar
  8. Conrad R (2009) The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep 1(5):285–292CrossRefPubMedGoogle Scholar
  9. Deppenmeier U (2004) The membrane-bound electron transport system of Methanosarcina species. J Bioenerg Biomembr 36(1):55–64CrossRefPubMedGoogle Scholar
  10. Ettwig KF et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464(7288):543–548CrossRefPubMedGoogle Scholar
  11. Ettwig KF et al (2012) Bacterial oxygen production in the dark. Front Microbiol 3:273CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ettwig KF et al (2016) Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA 113:12792–12796CrossRefPubMedGoogle Scholar
  13. Ferry JG (2015) Acetate metabolism in anaerobes from the domain Archaea. Life 5:1454–1471CrossRefPubMedPubMedCentralGoogle Scholar
  14. Guss AM, Kulkarni G, Metcalf WW (2009) Differences in hydrogenase gene expression between Methanosarcina acetivorans and Methanosarcina barkeri. J Bacteriol 191(8):2826–2833CrossRefPubMedPubMedCentralGoogle Scholar
  15. Hallam SJ et al (2004) Reverse methanogenesis: testing the hypothesis with environmental genomics. Science 305(5689):1457–1462CrossRefPubMedGoogle Scholar
  16. Harder J (1997) Anaerobic methane oxidation by bacteria employing 14C-methane uncontaminated with 14C-carbon monoxide. Mar Geol 137:13–23CrossRefGoogle Scholar
  17. Haroon MF et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500(7464):567–570CrossRefPubMedGoogle Scholar
  18. Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Wefer G et al (eds) Ocean margin systems. Springer, Berlin, Germany, pp 457–477CrossRefGoogle Scholar
  19. Hinrichs KU et al (1999) Methane-consuming archaebacteria in marine sediments. Nature 398(6730):802–805CrossRefPubMedGoogle Scholar
  20. Hu S et al (2009) Enrichment of denitrifying anaerobic methane oxidizing microorganisms. Environ Microbiol Rep 1(5):377–384CrossRefPubMedGoogle Scholar
  21. Jasso-Chavez R et al (2013) MrpA functions in energy conversion during acetate-dependent growth of Methanosarcina acetivorans. J Bacteriol 195(17):3987–3994CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jasso-Chavez R et al (2016) Functional role of MrpA in the MrpABCDEFG Na+/H+ antiporter complex from the archaeon Methanosarcina acetivorans. J Bacteriol 199:1–13Google Scholar
  23. Kletzin A et al (2015) Cytochromes c in Archaea: distribution, maturation, cell architecture, and the special case of Ignicoccus hospitalis. Front Microbiol 6:439CrossRefPubMedPubMedCentralGoogle Scholar
  24. Knittel K et al (2005) Diversity and distribution of methanotrophic archaea at cold seeps. Appl Environ Microbiol 71(1):467–479CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li Q et al (2006) Electron transport in the pathway of acetate conversion to methane in the marine archaeon Methanosarcina acetivorans. J Bacteriol 188(2):702–710CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lloyd KG, Lapham L, Teske A (2006) An anaerobic methane-oxidizing community of ANME-1b archaea in hypersaline Gulf of Mexico sediments. Appl Environ Microbiol 72(11):7218–7230CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lundie LL, Ferry JG (1989) Activation of acetate by Methanosarcina thermophila. Purification and characterization of phosphotransacetylase. J Biol Chem 264:18392–18396PubMedGoogle Scholar
  28. McGlynn SE et al (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535CrossRefPubMedGoogle Scholar
  29. Meyerdierks A et al (2010) Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ Microbiol 12(2):422–439CrossRefPubMedGoogle Scholar
  30. Mills HJ et al (2003) Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 46(1):39–52CrossRefPubMedGoogle Scholar
  31. Moran JJ et al (2005) Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea 1:303–309CrossRefPubMedGoogle Scholar
  32. Moran JJ et al (2007) Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina. J Geophys Res 112:1–7CrossRefGoogle Scholar
  33. Nazem-Bokaee H et al (2016) Assessing methanotrophy and carbon fixation for biofuel production by Methanosarcina acetivorans. Microb Cell Factories 15(1):1–13CrossRefGoogle Scholar
  34. Oni OE, Friedrich MW (2017) Metal oxide reduction linked to anaerobic methane oxidation. Trends Microbiol 25(2):88–90CrossRefPubMedGoogle Scholar
  35. Orphan VJ et al (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293(5529):484–487CrossRefPubMedGoogle Scholar
  36. Raghoebarsing AA et al (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440(7086):918–921CrossRefPubMedGoogle Scholar
  37. Reeburgh WS (1996) “Soft spots” in the global methane budget. In: Lidstrom ME, Tabita FR (eds) Microbial growth on C1 compounds. Kluwer Academic Publishers, Amsterdam, pp 334–342CrossRefGoogle Scholar
  38. Satish Kumar V, Ferry JG, Maranas CD (2011) Metabolic reconstruction of the archaeon methanogen Methanosarcina acetivorans. BMC Syst Biol 5:28CrossRefPubMedPubMedCentralGoogle Scholar
  39. Scheller S et al (2016) Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 351:703–707CrossRefPubMedGoogle Scholar
  40. Schlegel K et al (2012a) Electron transport during aceticlastic methanogenesis by Methanosarcina acetivorans involves a sodium-translocating Rnf complex. FEBS J 279:4444–4452CrossRefPubMedGoogle Scholar
  41. Schlegel K et al (2012b) Promiscuous archaeal ATP synthase concurrently coupled to Na+ and H+ translocation. Proc Natl Acad Sci USA 109:947–952CrossRefPubMedGoogle Scholar
  42. Sivan O, Shusta SS, Valentine DL (2016) Methanogens rapidly transition from methane production to iron reduction. Geobiology 14:190–203CrossRefPubMedGoogle Scholar
  43. Soo VW et al (2016) Reversing methanogenesis to capture methane for liquid biofuel precursors. Microb Cell Fact 15(1):11CrossRefPubMedPubMedCentralGoogle Scholar
  44. Suharti S et al (2014) Characterization of the RnfB and RnfG subunits of the Rnf complex from the archaeon Methanosarcina acetivorans. PLoS One 9:e97966CrossRefPubMedPubMedCentralGoogle Scholar
  45. Thor S, Peterson JR, Luthey-Schulten Z (2017) Genome-scale metabolic modeling of archaea lends insight into diversity of metabolic function. Archaea 2017:9763848CrossRefPubMedPubMedCentralGoogle Scholar
  46. Timmers PH et al (2017) Reverse methanogenesis and respiration in methanotrophic Archaea. Archaea 2017:1654237CrossRefPubMedPubMedCentralGoogle Scholar
  47. Wang M, Tomb JF, Ferry JG (2011) Electron transport in acetate-grown Methanosarcina acetivorans. BMC Microbiol 11:165CrossRefPubMedPubMedCentralGoogle Scholar
  48. Wang FP et al (2014) Methanotrophic archaea possessing diverging methane-oxidizing and electron-transporting pathways. ISME J 8:1069–1078CrossRefPubMedGoogle Scholar
  49. Welte C et al (2010) Function of Ech hydrogenase in ferredoxin-dependent, membrane-bound electron transport in Methanosarcina mazei. J Bacteriol 192(3):674–678CrossRefPubMedGoogle Scholar
  50. Welte CU et al (2016) Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ. Microbiol Rep 8:941–955CrossRefPubMedGoogle Scholar
  51. Yan Z, Wang M, Ferry JG (2017) A ferredoxin- and F420H2-dependent, electron-bifurcating, heterodisulfide reductase with homologs in the domains bacteria and archaea. mBio 8:1–15CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hadi Nazem-Bokaee
    • 1
  • Zhen Yan
    • 2
  • Costas D. Maranas
    • 1
  • James G. Ferry
    • 2
  1. 1.Department of Chemical EngineeringThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Biochemistry and Molecular BiologyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations