Advertisement

Cell Culture Media

  • Reinhard Henschler
Chapter
Part of the Learning Materials in Biosciences book series (LMB)

Abstract

The chapter provides an overwiev on the basic constituents of culture media for mammalian cells and their derivation. The relevance of these constituents for individual cell types from different tissues will be covered with a focus on stem and progenitor cells. Moreover, approaches toward the derivation of defined media and the supplementation of serum additives are described. The relevance of physical parameters such as osmolarity and buffer systems will be approached.

References

  1. 1.
    Arnold EA, Katsnelson I, Hoffman GJ. Proliferation and differentiation of hematopoietic stem cells in long-term cultures of adult hamster spleen. J Exp Med. 1982;155:1370–84.CrossRefGoogle Scholar
  2. 2.
    Arora M. Cell culture media: a review. Mater Methods. 2013;3:175.Google Scholar
  3. 3.
    Astori G, Amati E, Bambi F, Bernardi M, Chieregato K, Schäfer R, Sella S, Rodeghiero F. Platelet lysate as a substitute for animal serum for the ex-vivo expansion of mesenchymal stem/stromal cells: present and future. Stem Cell Res Ther. 2016;7:93.CrossRefGoogle Scholar
  4. 4.
    Berthois Y, Katzenellenbogen J, Katzenellenbogen B. Phenol red in tissue culture media is a weak estrogen: implications concerning the study of estrogen-responsive cells in culture. Proc Natl Acad Sci U S A. (1986);83:2496–500.CrossRefGoogle Scholar
  5. 5.
    Borowski M, Giovino-Doherty M, Ji L, Shi MJ, Smith KP, Laning J. Basic pluripotent stem cell culture protocols. StemBook [Internet]. Cambridge, MA: Harvard Stem Cell Institute; 2012.Google Scholar
  6. 6.
    Burnouf T, Strunk D, Koh MB, Schallmoser K. Human platelet lysate: replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials. 2016;76:371–87.CrossRefGoogle Scholar
  7. 7.
    Caplan AI, Correa D. The MSC: an injury drugstore. Cell Stem Cell. 2011;9:11–5.CrossRefGoogle Scholar
  8. 8.
    Chen P, Harcum SW. Effects of elevated ammonium on glycosylation gene expression in CHO cells. Metab Eng. 2006;8(2):123–32.CrossRefGoogle Scholar
  9. 9.
    Csaszar E, Chen K, Caldwell J, Chan W, Zandstra PW. Real-time monitoring and control of soluble signaling factors enables enhanced progenitor cell outputs from human cord blood stem cell cultures. Biotechnol Bioeng. 2014;111:1258–64.CrossRefGoogle Scholar
  10. 10.
    Dexter TM, Allen TD, Lajtha LG, Schofield R, Lord BI. Stimulation of differentiation and proliferation of haemopoietic cells in vitro. J Cell Physiol. 1973;82:461–73.CrossRefGoogle Scholar
  11. 11.
    Duarte TM, Carinhas N, Barreiro LC, Carrondo MJ, Alves PM, Teix-eira AP. Metabolic responses of CHO cells to limitation of key amino acids. Biotechnol Bioeng. 2014;111:2095–106.CrossRefGoogle Scholar
  12. 12.
    Dührsen U, Metcalf D. Effects of irradiation of recipient mice on the behavior and leukemogenic potential of factor-dependent hematopoietic cell lines. Blood. 1990;75(1):190–7.PubMedGoogle Scholar
  13. 13.
    Eagle H. Nutrition needs of mammalian cells in tissue culture. Science. 1955a;122(3168):501–4.CrossRefGoogle Scholar
  14. 14.
    Eagle H. The minimum vitamin requirements of the L and HeLa cells in tissue culture, the production of specific vitamin deficiencies, and their cure. J Exp Med. 1955b;102(5):595–600.CrossRefGoogle Scholar
  15. 15.
    Fischer A. Amino-acid metabolism of tissue cells in vitro. Biochem J. 1948;43(4):491–7.CrossRefGoogle Scholar
  16. 16.
    FRAME initiative et al. Serum-free media for cell culture. A Dr Hadwen Trust/FRAME initiative on behalf of Focus on Alternatives. Downloaded from http://www.drhadwentrust.org/DHT%20-%20FCS%20Free%20Table.pdf, Jan 2017; 2009.
  17. 17.
    Green CR, Wallace M, Divakaruni AS, Phillips SA, Murphy AN, Ciaraldi TP, Metallo CM. Branched-chain amino acid catabolism fuels adipocyte differentiation and lipogenesis. Nat Chem Biol. 2016;12(1):15–21.CrossRefGoogle Scholar
  18. 18.
    Hopp L, Bunker CH. Lipophilic impurity of phenol red is a potent cation transport modulator. J Cell Physiol. 1993;157:594–602.CrossRefGoogle Scholar
  19. 19.
    Horwitz EM, Gordon PL, Koo WK, Marx JC, Neel MD, McNall RY, Muul L, Hofmann T. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: implications for cell therapy of bone. Proc Natl Acad Sci U S A. 2002;99:8932–7.CrossRefGoogle Scholar
  20. 20.
    Howorth P. The physiological assessment of acid-base balance. Br J Dis Chest. 1975;69:75–102.CrossRefGoogle Scholar
  21. 21.
    Jover J, Bosque R, Sales J. A comparison of the binding affinity of the common amino acids with different metal cations. Dalton Trans. 2008;45:6441–53.CrossRefGoogle Scholar
  22. 22.
    Labuschagne CF, van den Broek NJ, Mackay GM, Vousden KH, Maddocks OD. Serine, but not glycine, supports one-carbon metabolism and proliferation of cancer cells. Cell Rep. 2014;7:1248–58.CrossRefGoogle Scholar
  23. 23.
    Lambert RA. The effect of dilution of plasma medium on the growth and fat accumulation of cells in tissue cultures. J Exp Med. 1914;19:398–405.CrossRefGoogle Scholar
  24. 24.
    Sanford KK, Earle WR, Likely GD. The growth in vitro of single isolated tissue cells. J Natl Cancer Inst. 1948;9(3):229–46.Google Scholar
  25. 25.
    Kurano S, Kurano N, Leist C, Fiechter A. Utilization and stability of vitamins in serum containing and serum-free media in CHO cell culture. Cytotechnology. 1990;4:243–50.CrossRefGoogle Scholar
  26. 26.
    Mainzer C, Barrichello C, Debret R, Remoué N, Sigaudo-Roussel D, Sommer P. Insulin-transferrin-selenium as an alternative to foetal serum for epidermal equivalents. Int J Cosmet Sci. 2014;36:427–35.CrossRefGoogle Scholar
  27. 27.
    Metcalf D. Regulatory control of the proliferation ad differentiation of normal and leukemia cells. Natl Cancer Inst Monogr. 1982;60:123–31.PubMedGoogle Scholar
  28. 28.
    Miller G, Enders JF, Lisco H, Kohn HI. Establishment of lines from normal human blood leukocytes by co-cultivation with a leukocyte line derived from a leukemic child. Proc Soc Exp Biol Med. 1969;132:247–52.CrossRefGoogle Scholar
  29. 29.
    Miller G, Lisco H, Kohn HI, Stitt D, Enders JF. Establishment of cell lines from normal adult human blood leukocytes by exposure to Epstein-Barr virus and neutralization by human sera with Epstein-Barr virus antibody. Proc Soc Exp Biol Med. 1971;137:1459–65.CrossRefGoogle Scholar
  30. 30.
    Möbest D, Mertelsmann R, Henschler R. Serum-free ex vivo expansion of CD34(+) hematopoietic progenitor cells. Biotechnol Bioeng. 1998;60:341–7.CrossRefGoogle Scholar
  31. 31.
    Moore GE, Gerner RE, Franklin HA. Culture of normal human leukocytes. JAMA. 1967;199:519–24.CrossRefGoogle Scholar
  32. 32.
    Oh HK, So MK, Yang J, Yoon HC, Ahn JS, Lee JM, Kim JT, Yoo JU, Byun TH. Effect of N-acetylcystein on butyrate-treated Chinese hamster ovary cells to improve the production of recombinant human interferon-β-1a. Biotechnol Prog. 2005;21(4):1154–64.CrossRefGoogle Scholar
  33. 33.
    Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed Res Int. 2014;2014:965849.CrossRefGoogle Scholar
  34. 34.
    Purpura KA, Morin J, Zandstra PW. Analysis of the temporal and concentration-dependent effects of BMP-4, VEGF, and TPO on development of embryonic stem cell-derived mesoderm and blood progenitors in a defined, serum-free media. Exp Hematol. 2008;36:1186–98.CrossRefGoogle Scholar
  35. 35.
    Purwaha P, Silva LP, Hawke DH, Weinstein JN, Lorenzi PL. An artifact in LC-MS/MS measurement of glutamine and glutamic acid: in-source cyclization to pyroglutamic acid. Anal Chem. 2014;86(12):5633–7.CrossRefGoogle Scholar
  36. 36.
    Reznikov B. Incubation of Brucella on solid nutrient media with a phenol red indicator. Veterinariia. 1972;7:109–10.PubMedGoogle Scholar
  37. 37.
    Rothblat GH, Cristofalo VJ. Growth, nutrition and metabolism of cells in culture. New York: Academic Press Inc; 1972. p. 56–64.Google Scholar
  38. 38.
    Rothblat GH, Hartzell R, Mialhe H, Kritchevsk D. Cholesterol metabolism in tissue culture cells. In: Rothblat GH, Kritchevsky D, editors. Lipid metabolism in tissue culture cells. Philadelphia: Wistar Institute Press; 1967. p. 129–49.Google Scholar
  39. 39.
    Rouiller Y, Perilleux A, Vesin MN, Stettler M, Jordan M, Broly H. Modulation of mAb quality attributes using micro- liter scale fed-batch cultures. Biotechnol Prog. 2014;30(3):571–83.CrossRefGoogle Scholar
  40. 40.
    Salazar A, Keusgen M, von Hagen J. Amino acids in the cultivation of mammalian cells. Amino Acids. 2016;48:1161–71.CrossRefGoogle Scholar
  41. 41.
    Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. 1953;97(5):695–710.CrossRefGoogle Scholar
  42. 42.
    Shipman C. Evaluation of 4-(2-hydroxyethyl)-1-piperazineëthanesulfonic acid (HEPES) as a tissue culture buffer. Proc Soc Exp Biol Med. 1969;130:305–10.CrossRefGoogle Scholar
  43. 43.
    Tomishima M. Conditioning pluripotent stem cell media with mouse embryonic fibroblasts (MEF-CM). StemBook [Internet]. Cambridge, MA: Harvard Stem Cell Institute; 2012.Google Scholar
  44. 44.
    van der Valk J, Brunner D, De Smet K, Fex Svenningsen Å, Honeg-ger P, Knudsen LE, Lindl T, Noraberg J, Price A, Scarino ML, Gstraunthaler G. Optimization of chemically defined cell culture media—replacing fetal bovine serum in mammalian in vitro methods. Toxicol Vitro. 2010;24(4):1053–63.CrossRefGoogle Scholar
  45. 45.
    Xing Z, Kenty B, Koyrakh I, Borys M, Pan S-H, Li ZJ. Opti- mizing amino acid composition of CHO cell culture media for a fusion protein production. Process Biochem. 2011;46(7):1423–9.CrossRefGoogle Scholar
  46. 46.
    Zigler J, Lepe-Zuniga J, Vistica B, Gery I. Analysis of the cytotoxic effects of light-exposed HEPES-containing culture medium. In Vitro Cell Dev Biol. 1985;21:282–7.CrossRefGoogle Scholar
  47. 47.
    Zimmer A, Mueller R, Wehsling M, Schnellbaecher A, von Hagen J. Improvement and simplification of fed-batch bio- processes with a highly soluble phosphotyrosine sodium salt. J Biotechnol. 2014;186:110–8.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Blood Transfusion Services SRCZürich/ChurSwitzerland

Personalised recommendations