Advertisement

Preventing Surgical Site Infections in Otolaryngology

  • Marlene L. Durand
Chapter

Abstract

Surgical site infections (SSIs) cause significant morbidity and mortality as well as increased cost and length of stay. Guidelines on measures to reduce SSIs have been offered by many organizations, including the World Health Organization in 2016 and the Centers for Disease Control and Prevention in 2017. Recommended measures include maintaining perioperative normothermia, normovolemia, and glycemic control, ensuring adequate tissue oxygenation, and the appropriate use of surgical antibiotic prophylaxis. This chapter discusses these recommendations and their efficacy in preventing SSIs in otolaryngology.

Keywords

Surgical site infection Surgical antibiotic prophylaxis Wound infection Guidelines in otolaryngology 

References

  1. 1.
    Centers for Disease Control and Prevention (CDC). Surgical site infection (SSI) event, Jan 2017 update. http://www.cdc.gov/nhsn/pdfs/pscmanual/9pscssicurrent.pdf. Accessed Oct 2017.
  2. 2.
    Berríos-Torres SI, Umscheid CA, Bratzler DW, et al., For the Healthcare Infection Control Practices Advisory Committee Centers for disease control and prevention guideline for the prevention of surgical site infection, 2017. JAMA Surg 2017;152(8):784–791. doi: https://doi.org/10.1001/jamasurg.2017.0904.CrossRefPubMedGoogle Scholar
  3. 3.
    Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol. 2016;14(8):e1002533.  https://doi.org/10.1371/journal.pbio.1002533.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bruce J, Russell EM, Mollison J, Krukowski ZH. The quality of measurement of surgical wound infection as the basis for monitoring: a systematic review. J Hosp Infect. 2001;49(2):99–108.CrossRefPubMedGoogle Scholar
  5. 5.
    European Centre for Disease Prevention and Control (ECDC). Surveillance of surgical site infections in European hospitals – HAISSI protocol. Protocol version 1.02. Stockholm: ECDC; 2012. http://ecdc.europa.eu/sites/portal/files/media/en/publications/Publications/120215_TED_SSI_protocol.pdf. Accessed Nov 2017.
  6. 6.
    Yarlagadda BB, Deschler DG, Rich DL, et al. Head and neck free flap surgical site infections in the era of the Surgical Care Improvement Project. Head Neck. 2016;38(Suppl 1):E392–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Durand ML, Yarlagadda BB, Rich DL, et al. The time course and microbiology of surgical site infections after head and neck free flap surgery. Laryngoscope. 2015;125:1084–9.CrossRefPubMedGoogle Scholar
  8. 8.
    Holtz TH, Wenzel RP. Postdischarge surveillance for nosocomial wound infection: a brief review and commentary. Am J Infect Control. 1992;20(4):206–13.CrossRefPubMedGoogle Scholar
  9. 9.
    Oliveira AC, Carvalho DV. Postdischarge surveillance: the impact on surgical site infection incidence in a Brazilian university hospital. Am J Infect Control. 2004;32(6):358–61.CrossRefPubMedGoogle Scholar
  10. 10.
    Ban KA, Minei JP, Laronga C, et al. American College of Surgeons and Surgical Infection Society: surgical site infection guidelines, 2016 update. J Am Coll Surg. 2017;224(1):59–74.  https://doi.org/10.1016/j.jamcollsurg.2016.10.029.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Anderson DJ, Podgorny K, Berríos-Torres SI, et al. Strategies to prevent surgical site infections in acute care hospitals: 2014 update. Infect Control Hosp Epidemiol. 2014;35(6):605–27.  https://doi.org/10.1086/676022.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    World Health Organization. Global guidelines for the prevention of surgical site infection. http://www.who.int/gpsc/ssi-guidelines/en/. Accessed Oct 2017.
  13. 13.
    Sievert DM, Ricks P, Edwards JR, et al. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009–2010. Infect Control Hosp Epidemiol. 2013;34(1):1–14.CrossRefPubMedGoogle Scholar
  14. 14.
    Stefani S, Chung DR, Lindsay JA, et al. Methicillin-resistant Staphylococcus aureus (MRSA): global epidemiology and harmonization of typing methods. Int J Antimicrob Agents. 2012;39(4):273–82.CrossRefPubMedGoogle Scholar
  15. 15.
    Davis KA, Stewart JJ, Crouch HK, Florez CE, Hospenthal DR. Methicillin-resistant Staphylococcus aureus (MRSA) nares colonization at hospital admission and its effect on subsequent MRSA infection. Clin Infect Dis. 2004;39(6):776–82.CrossRefPubMedGoogle Scholar
  16. 16.
    Kalra L, Camacho F, Whitener CJ, et al. Risk of methicillin-resistant Staphylococcus aureus surgical site infection in patients with nasal MRSA colonization. Am J Infect Control. 2013;41(12):1253–7.CrossRefPubMedGoogle Scholar
  17. 17.
    Matheson A, Christie P, Stari T, et al. Nasal swab screening for methicillin-resistant Staphylococcus aureus—how well does it perform? A cross-sectional study. Infect Control Hosp Epidemiol. 2012;33(8):803–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Morgan DJ, Day HR, Furuno JP, et al. Improving efficiency in active surveillance for methicillin-resistant Staphylococcus aureus or vancomycin-resistant Enterococcus at hospital admission. Infect Control Hosp Epidemiol. 2010;31(12):1230–5.  https://doi.org/10.1086/657335.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Shenoy ES, Paras ML, Noubary F, Walensky RP, Hooper DC. Natural history of colonization with methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE): a systematic review. BMC Infect Dis. 2014;14:177.  https://doi.org/10.1186/1471-2334-14-177.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Robicsek A, Beaumont JL, Peterson LR. Duration of colonization with methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2009;48(7):910–3.CrossRefPubMedGoogle Scholar
  21. 21.
    Sai N, Laurent C, Strale H, et al. Efficacy of the decolonization of methicillin-resistant Staphylococcus aureus carriers in clinical practice. Antimicrob Resist Infect Control. 2015;4:56.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tanner J, Norrie P, Melen K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev. 2011;11:CD004122.Google Scholar
  23. 23.
    Darouiche RO, Wall MJ Jr, Itani KM, et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N Engl J Med. 2010;362(1):18–26.CrossRefPubMedGoogle Scholar
  24. 24.
    Wetterslev J, Meyhoff CS, Jørgensen LN, et al. The effects of high perioperative inspiratory oxygen fraction for adult surgical patients. Cochrane Database Syst Rev. 2015;6:CD008884.Google Scholar
  25. 25.
    Akca O, Ball L, Belda FJ, et al. WHO needs high FIO2? Turk J Anaesthesiol Reanim. 2017;45(4):181–92.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Ball L, Lumb AB, Pelosi P. Intraoperative fraction of inspired oxygen: bringing back the focus on patient outcome. Br J Anaesth. 2017;119:16–8.CrossRefPubMedGoogle Scholar
  27. 27.
    Hedenstierna G, Perchiazzi G, Meyhoff CS, Larsson A. Who can make sense of the WHO guidelines to prevent surgical site infection? Anesthesiology. 2017;126:771–3.CrossRefPubMedGoogle Scholar
  28. 28.
    Kurz A, Sessler DI, Lenhardt R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group. N Engl J Med. 1996 9;334(19):1209–15.CrossRefPubMedGoogle Scholar
  29. 29.
    Melling AC, Ali B, Scott EM, Leaper DJ. Effects of preoperative warming on the incidence of wound infection after clean surgery: a randomised controlled trial. Lancet. 2001;358(9285):876–80.CrossRefPubMedGoogle Scholar
  30. 30.
    Wong PF, Kumar S, Bohra A, Whetter D, Leaper DJ. Randomized clinical trial of perioperative systemic warming in major elective abdominal surgery. Br J Surg. 2007;94(4):421–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Boreland L, Scott-Hudson M, Hetherington K, Frussinetty A, Slyer JT. The effectiveness of tight glycemic control on decreasing surgical site infections and readmission rates in adult patients with diabetes undergoing cardiac surgery: a systematic review. Heart Lung. 2015;44(5):430–40.CrossRefPubMedGoogle Scholar
  32. 32.
    Al-Niaimi AN, Ahmed M, Burish N, et al. Intensive postoperative glucose control reduces the surgical site infection rates in gynecologic oncology patients. Gynecol Oncol. 2015;136(1):71–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Olsen MA, Nepple JJ, Riew KD, et al. Risk factors for surgical site infection following orthopaedic spinal operations. J Bone Joint Surg Am. 2008;90(1):62–9.CrossRefPubMedGoogle Scholar
  34. 34.
    de Vries FE, Gans SL, Solomkin JS, et al. Meta-analysis of lower perioperative blood glucose target levels for reduction of surgical-site infection. Br J Surg. 2017;104(2):e95–e105.CrossRefPubMedGoogle Scholar
  35. 35.
    London, Department of Health High impact intervention care bundle to prevent surgical site infection. London, Department of Health, 2011. http://webarchive.nationalarchives.gov.uk/20120118171639/http://hcai.dh.gov.uk/files/2011/03/2011-03-14-HII-Prevent-Surgical-Site-infection-FINAL.pdf. Accessed Nov 2017.
  36. 36.
    Bratzler DW, Dellinger EP, Olsen KM, et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013;70(3):195–283.CrossRefGoogle Scholar
  37. 37.
    Ahmed NJ, Jalil MA, Al-Shedfat RI, et al. The practice of preoperative antibiotic prophylaxis and the adherence to guideline in Riyadh hospitals. Bull Env Pharmacol Life Sci. 2015;5:8–14.Google Scholar
  38. 38.
    Mousavi S, Zamani E, Bahrami F. An audit of perioperative antimicrobial prophylaxis: compliance with the international guidelines. J Res Pharm Pract. 2017;6(2):126–9.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Avenia N, Sanguinetti A, Cirocchi R, et al. Antibiotic prophylaxis in thyroid surgery: a preliminary multicentric Italian experience. Ann Surg Innov Res. 2009;3:10.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Samraj K, Gurusamy KS. Wound drains following thyroid surgery. Cochrane Database Syst Rev. 2007;4:CD006099.Google Scholar
  41. 41.
    Randel A. AAO-HNS guidelines for tonsillectomy in children and adolescents. Am Fam Physician. 2011;84(5):566–73.PubMedGoogle Scholar
  42. 42.
    Robson A, Sturman J, Williamson P, et al. Pre-treatment clinical assessment in head and neck cancer: United Kingdom national multidisciplinary guidelines. J Laryngol Otol. 2016;130(S2):S13–22.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Ariyan S, Martin J, Lal A, et al. Antibiotic prophylaxis for preventing surgical-site infection in plastic surgery: an evidence-based consensus conference statement from the American Association of Plastic Surgeons. Plast Reconstr Surg. 2015;135(6):1723–39.CrossRefPubMedGoogle Scholar
  44. 44.
    Korinek AM, Golmard JL, Elcheick A, et al. Risk factors for neurosurgical site infections after craniotomy: a critical reappraisal of antibiotic prophylaxis on 4,578 patients. Br J Neurosurg. 2005;19(2):155–62.CrossRefPubMedGoogle Scholar
  45. 45.
    Bratzler DW, Hunt DR. The surgical infection prevention and surgical care improvement projects: national initiatives to improve outcomes for patients having surgery. Clin Infect Dis. 2006;43(3):322–30.CrossRefPubMedGoogle Scholar
  46. 46.
    Classen DC, Evans RS, Pestotnik SL, et al. The timing of prophylactic administration of antibiotics and the risk of surgical-wound infection. N Engl J Med. 1992;326(5):281–6.CrossRefPubMedGoogle Scholar
  47. 47.
    Steinberg JP, Braun BI, Hellinger WC, et al. Timing of antimicrobial prophylaxis and the risk of surgical site infections: results from the Trial to Reduce Antimicrobial Prophylaxis Errors. Ann Surg. 2009;250(1):10–6.CrossRefPubMedGoogle Scholar
  48. 48.
    Chang V, Blackwell RH, Markossian T, et al. Discordance between surgical care improvement project adherence and postoperative outcomes: implications for new Joint Commission standards. J Surg Res. 2017;212:205–13.CrossRefPubMedGoogle Scholar
  49. 49.
    De Jonge SW, Gans SL, Aterna JJ, et al. Timing of preoperative antibiotic prophylaxis in 54,552 patients and the risk of surgical site infection. A systematic review and meta-analysis. Medicine. 2017;96(29):e6903.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Langerman A, Ham SA, Pisano J, et al. Laryngectomy complications are associated with perioperative antibiotic choice. Otolaryngol Head Neck Surg. 2015;153(1):60–8.CrossRefPubMedGoogle Scholar
  51. 51.
    Pool C, Kass J, Spivack J, et al. Increased surgical site infection rates following clindamycin use in head and neck free tissue transfer. Otolaryngol Head Neck Surg. 2016;154(2):272–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Goyal N, Yarlagadda BB, Deschler DG, et al. Surgical site infections in major head and neck surgeries involving pedicled flap reconstruction. Ann Otol Rhinol Laryngol. 2017;126(1):20–8.CrossRefPubMedGoogle Scholar
  53. 53.
    Simons JP, Johnson JT, Yu VL, et al. The role of topical antibiotic prophylaxis in patients undergoing contaminated head and neck surgery with flap reconstruction. Laryngoscope. 2001;111(2):329–35.CrossRefPubMedGoogle Scholar
  54. 54.
    Navalkele B, Pogue JM, Karino S, et al. Risk of Acute kidney injury in patients on concomitant vancomycin and piperacillin-tazobactam compared to those on vancomycin and cefepime. Clin Infect Dis. 2017;64(2):116–23.CrossRefPubMedGoogle Scholar
  55. 55.
    Hammond DA, Smith MN, Li C, et al. Systematic review and meta-analysis of acute kidney injury associated with concomitant vancomycin and piperacillin/tazobactam. Clin Infect Dis. 2017;64(5):666–74.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Infectious Diseases, Department of Medicine, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Infectious Disease Service, Massachusetts Eye and Ear InfirmaryHarvard Medical SchoolBostonUSA

Personalised recommendations