Lactic Acid Bacteria and Yeasts as Starter Cultures for Fermented Foods and Their Role in Commercialization of Fermented Foods

  • Sujatha Kandasamy
  • Digambar Kavitake
  • Prathapkumar Halady Shetty
Part of the Food Microbiology and Food Safety book series (FMFS)


Consumption of fermented foods has substantially increased in the recent years due to their valuable traits that extend well beyond shelf life, preservation and sensory qualities. These foods turn out to play a central role in the diet of several cultures because of its enriched health benefits that are known to possess antimicrobial, antidiabetic, anti-atherosclerotic, antioxidant and anti-inflammatory activities. Consequently, fermentable microorganisms, fermentation process and its products draw scientific interest. Currently fermented food production is mainly carried out using starter cultures for a precise and expectable fermentation. Lactic acid bacteria (LAB) and yeast are the highly studied starters applied in several fermented food production industries such as dairy, meat, sourdough, vegetables, etc. Advanced genetic approaches towards selection of promising organisms can meet the huge demand in starter culture markets along with providing functional value to some traditional food products. This chapter outlines about fermented foods, starter culture types, selection criteria, starter culture markets, role and application of LAB and yeast in fermented foods.


Starter culture Fermented foods Lactic acid bacteria Yeast 


  1. Achi OK, Ukwuru M (2015) Cereal-based fermented foods of Africa as functional foods. Int J Microbiol Appl 2(4):71–83Google Scholar
  2. Ahmed Z, Wang Y, Ahmad A, Khan ST, Nisa M, Ahmad H, Afreen A (2013) Kefir and health: a contemporary perspective. Crit Rev Food Sci Nutr 53(5):422–434PubMedCrossRefGoogle Scholar
  3. Aidoo KE, Nout NJR, Sarkar PK (2006) Occurrence and function of yeasts in Asian indigenous fermented foods. FEMS Yeast Res 6:30–39PubMedCrossRefGoogle Scholar
  4. Altieri C, Ciuffreda E, Di Maggio B, Sinigaglia M (2016). Lactic acid bacteria as starter cultures. In: Speranza B, Bevilacqua A, Corbo MR, Sinigaglia M. (Eds.). (2016). Starter Cultures in Food Production. John Wiley & Sons., Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 1–15Google Scholar
  5. Alvarez-Martin P, Florez AB, Hernández-Barranco A, Mayo B (2008) Interaction between dairy yeasts and lactic acid bacteria strains during milk fermentation. Food Control 19(1):62–70CrossRefGoogle Scholar
  6. Ammor MS, Mayo B (2007) Selection criteria for lactic acid bacteria to be used as functional starter cultures in dry sausage production: an update. Meat Sci 76(1):138–146PubMedCrossRefGoogle Scholar
  7. An SY, Lee MS, Jeon JY, Ha ES, Kim TH, Yoon JY, Han SJ (2013) Beneficial effects of fresh and fermented kimchi in prediabetic individuals. Ann Nutr Metab 63(1–2):111–119PubMedCrossRefGoogle Scholar
  8. Andrade MJ, Rodríguez M, Casado EM, Bermúdez E, Córdoba JJ (2009) Differentiation of yeasts growing on dry cured Iberian ham by mitochondrial DNA restriction analysis, RAPDPCR and their volatile compounds production. Food Microbiol 26:578–586PubMedCrossRefGoogle Scholar
  9. Ardhana MM, Fleet GH (2003) The microbial ecology of cocoa bean fermentations in Indonesia. Int J Food Microbiol 86:87–99PubMedCrossRefGoogle Scholar
  10. Arroyo López FN, Romero Gil V, Bautista Gallego J et al (2012) Potential benefits of the application of yeast starters in table olive processing. Front Microbiol 3:1–4CrossRefGoogle Scholar
  11. Arroyo-López FN, Durán-Quintana MC, Ruiz-Barba JL, Querol A, Garrido-Fernández A (2006) Use of molecular methods for the identification of yeast associated with table olives. Food Microbiol 23(8):791–796PubMedCrossRefGoogle Scholar
  12. Assadi MM, Pourahmad R, Moazami N (2000) Use of isolated kefir starter cultures in kefir production. World J Microbiol Biotechnol 16(6):541–543CrossRefGoogle Scholar
  13. Bachmann H, Pronk JT, Kleerebezem M, Teusink B (2015) Evolutionary engineering to enhance starter culture performance in food fermentations. Curr Opin Biotechnol 32:1–7PubMedCrossRefGoogle Scholar
  14. Baer A, Ryba I (1992) Serological identification of propionibacteria in milk and cheese samples. Int Dairy J 2(5):299–310CrossRefGoogle Scholar
  15. Beganović J, Kos B, Pavunc AL, Uroić K, Jokić M, Šušković J (2014) Traditionally produced sauerkraut as source of autochthonous functional starter cultures. Microbiol Res 169(7):623–632PubMedCrossRefGoogle Scholar
  16. Benkerroum N (2013) Traditional fermented foods of North African countries: technology and food safety challenges with regard to microbiological risks. Compr Rev Food Sci Food Saf 12(1):54–89CrossRefGoogle Scholar
  17. Bevilacqua A, Beneduce L, Sinigaglia M, Corbo MR (2013) Selection of yeasts as starter cultures for table olives. J Food Sci 78:742–751CrossRefGoogle Scholar
  18. Blana VA, Grounta A, Tassou CC, Nychas GJE, Panagou EZ (2014) Inoculated fermentation of green olives with potential probiotic Lactobacillus pentosus and Lactobacillus plantarum starter cultures isolated from industrially fermented olives. Food Microbiol 38:208–218PubMedCrossRefGoogle Scholar
  19. Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C (2003) Cereal-based fermented foods and beverages. Food Res Int 36(6):527–543CrossRefGoogle Scholar
  20. Boekhout T, Samson R (2005) Fungal biodiversity and food. In: Nout RMJ, de Vos WM, Zwietering MH (eds) Food fermentation. Wageningen Academic, Gelderland, pp 29–41Google Scholar
  21. Bourrie BC, Willing BP, Cotter PD (2016) The microbiota and health promoting characteristics of the fermented beverage kefir. Front Microbiol 7:647PubMedPubMedCentralCrossRefGoogle Scholar
  22. Buckenhüskes HJ (1993) Selection criteria for lactic acid bacteria to be used as starter cultures for various food commodities. FEMS Microbiol Rev 12:253–272CrossRefGoogle Scholar
  23. Buzzini P, Vaughan Martini A (2006) Yeast biodiversity and biotechnology. In: Rosa C, Péter G (eds) The yeast handbook: biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 533–559CrossRefGoogle Scholar
  24. Camu N, De Winter T, Verbrugghe K, Cleenwerck I, Vandamme P, Takrama JS, De Vuyst L (2007) Dynamics and biodiversity of populations of lactic acid bacteria and acetic acid bacteria involved in spontaneous heap fermentation of cocoa beans in Ghana. Appl Environ Microbiol 73(6):1809–1824PubMedPubMedCentralCrossRefGoogle Scholar
  25. Capece A, Romaniello R, Siesto G et al (2010) Selection of indigenous Saccharomyces cerevisiae strains for Nero d’Avola wine and evaluation of selected starter implantation in pilot fermentation. Int J Food Microbiol 144:187–192PubMedCrossRefGoogle Scholar
  26. Caplice E, Fitzgerald GF (1999) Food fermentations: role of microorganisms in food production and preservation. Int J Food Microbiol 50(1):131–149PubMedPubMedCentralCrossRefGoogle Scholar
  27. Carminati D, Giraffa G, Quiberoni A, Binetti A, Suarez V, Reinhemer J (2010) Advances and trends in starter culture for dairy fermentation. In: Mozzi F, Raya RR, Vignolo GM (eds) Biotechnology of lactic acid bacteria: novel applications. Blackwell, Oxford, pp 177–192CrossRefGoogle Scholar
  28. Chelule PK, Mbongwa HP, Carries S, Gqaleni N (2010) Lactic acid fermentation improves the quality of amahewu, a traditional South African maize-based porridge. Food Chem 122(3):656–661CrossRefGoogle Scholar
  29. Chen LS, Ma Y, Maubois JL, He SH, Chen LJ, Li HM (2010) Screening for the potential probiotic yeast strains from raw milk to assimilate cholesterol. Dairy Sci Technol 90(5):537–548CrossRefGoogle Scholar
  30. Chen M, Sun Q, Giovannucci E, Mozaffarian D, Manson JE, Willett WC, Hu FB (2014) Dairy consumption and risk of type 2 diabetes: 3 cohorts of US adults and an updated meta-analysis. BMC Med 12(1):215PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chen Y, Aorigele C, Wang C, Simujide H, Yang S (2015) Screening and extracting mycocin secreted by yeast isolated from koumiss and their antibacterial effect. J Food Nutr Res 3(1):52–56CrossRefGoogle Scholar
  32. Cheng H (2010) Volatile flavor compounds in yogurt: a review. Crit Rev Food Sci Nutr 50(10):938–950PubMedCrossRefGoogle Scholar
  33. Chilton SN, Burton JP, Reid G (2015) Inclusion of fermented foods in food guides around the world. Forum Nutr 7(1):390–404Google Scholar
  34. Choi IK, Jung SH, Kim BJ, Park SY, Kim J, Han HU (2003) Novel Leuconostoc citreum starter culture system for the fermentation of kimchi, a fermented cabbage product. Antonie Van Leeuwenhoek 84(4):247–253PubMedCrossRefGoogle Scholar
  35. Cogan TM, Beresford TP, Steele J, Broadbent J, Shah NP, Ustunol Z (2007) Invited review: advances in starter cultures and cultured foods. J Dairy Sci 90(9):4005–4021PubMedCrossRefGoogle Scholar
  36. Coppola S, Mauriello G, Aponte M, Moschetti G, Villani F (2000) Microbial succession during ripening of Naples-type salami, a southern Italian fermented sausage. Meat Sci 56(4):321–329PubMedCrossRefGoogle Scholar
  37. Corbo MR, Lanciotti R, Albenzio M, Sinigaglia M (2001) Occurrence and characterization of yeasts isolated from milks and dairy products of Apulia region. Int J Food Microbiol 69(1):147–152PubMedCrossRefGoogle Scholar
  38. Corona-González RI, Ramos-Ibarra JR, Gutiérrez-González P, Pelayo-Ortiz C, Guatemala-Morales GM, Arriola-Guevara E (2013) The use of response surface methodology to evaluate the fermentation conditions in the production of tepache. Revista Mexicana de Ingeniería Química 12(1):19–28Google Scholar
  39. Corsetti A, Perpetuini G, Schirone M, Tofalo R, Suzzi G (2012) Application of starter cultures to table olive fermentation: an overview on the experimental studies. Front Microbiol 3:1–6CrossRefGoogle Scholar
  40. Coton E, Coton M, Levert D, Casaregola S, Sohier D (2006) Yeast ecology in French cider and black olive natural fermentations. Int J Food Microbiol 108(1):130–135PubMedCrossRefGoogle Scholar
  41. Coulin P, Farah Z, Assanvo J, Spillmann H, Puhan Z (2006) Characterisation of the microflora of attiéké, a fermented cassava product, during traditional small scale preparation. Int J Food Microbiol 106(2):131–136PubMedCrossRefGoogle Scholar
  42. Crafack M, Mikkelsen MB, Saerens S et al (2013) Influencing cocoa flavour using Pichia kluyveri and Kluyveromyces marxianus in a defined mixed starter culture for cocoa fermentation. Int J Food Microbiol 167:103–116PubMedCrossRefGoogle Scholar
  43. Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria–potential for control of mould growth and mycotoxins: a review. Food Control 21(4):370–380CrossRefGoogle Scholar
  44. Daniel HM, Vrancken G, Takrama JF, Camu N, De Vos P, De Vuyst L (2009) Yeast diversity of Ghanaian cocoa bean heap fermentations. FEMS Yeast Res 9:774–783PubMedCrossRefGoogle Scholar
  45. Daniel HM, Moons MC, Huret S, Vrancken G, De Vuyst L (2011) Wickerhamomyces anomalus in the sourdough microbial ecosystem. Antonie Van Leeuwenhoek 99(1):63–73PubMedCrossRefGoogle Scholar
  46. De Castro A, Montaño A, Casado FJ, Sánchez AH, Rejano L (2002) Utilization of Enterococcus casseliflavus and Lactobacillus pentosus as starter cultures for Spanish-style green olive fermentation. Food Microbiol 19(6):637–644CrossRefGoogle Scholar
  47. De Vuyst L (2000) Technology aspects related to the application of functional starter cultures. Food Technol Biotechnol 38(2):105–112Google Scholar
  48. De Wit M, Osthoff G, Viljoen BC, Hugo A (2005) A comparative study of lipolysis and proteolysis in cheddar cheese and yeast-inoculated cheddar cheeses during ripening. Enzym Microb Technol 37(6):606–616CrossRefGoogle Scholar
  49. Drider D, Bekal S, Prevost H (2004) Genetic organization and expression of citrate permease in lactic acid bacteria. Genet Mol Res 3:273–281PubMedGoogle Scholar
  50. Ebner S, Smug LN, Kneifel W, Salminen SJ, Sanders ME (2014) Probiotics in dietary guidelines and clinical recommendations outside the European Union. World J Gastroenterol: WJG 20(43):16095PubMedPubMedCentralCrossRefGoogle Scholar
  51. Elmacı SB, Tokatlı M, Dursun D, Özçelik F, Şanlıbaba P (2015) Phenotypic and genotypic identification of lactic acid bacteria isolated from traditional pickles of the Çubuk region in Turkey. Folia Microbiol 60(3):241–251CrossRefGoogle Scholar
  52. Erten H, Ağirman B, Gündüz CPB, Çarşanba E, Sert S, Bircan S, Tangüler H (2014) Importance of yeasts and lactic acid bacteria in food processing. In: Food processing: strategies for quality assessment. Springer, New York, pp 351–378Google Scholar
  53. Fadda ME, Viale S, Deplano M, Pisano MB, Cosentino S (2010) Characterization of yeast population and molecular fingerprinting of Candida zeylanoides isolated from goat’s milk collected in Sardinia. Int J Food Microbiol 136(3):376–380PubMedCrossRefGoogle Scholar
  54. Faria-Oliveira F, Diniz RH, Godoy-Santos F, Piló FB, Mezadri H, Castro IM, Brandão RL (2015) The role of yeast and lactic acid bacteria in the production of fermented beverages in South America. In: Food production and industry. InTechGoogle Scholar
  55. Feijoo-Siota L, Blasco L, Luis Rodriguez-Rama J, Barros-Velázquez J, de Miguel T, Sánchez-Pérez A, Villa G, T. (2014) Recent patents on microbial proteases for the dairy industry. Recent Adv DNA Gene Seq (Formerly Recent Patents DNA Gene Seq) 8(1):44–55CrossRefGoogle Scholar
  56. Ferreira AD, Viljoen BC (2003) Yeasts as adjunct starters in matured cheddar cheese. Int J Food Microbiol 86(1):131–140PubMedCrossRefGoogle Scholar
  57. Fleet GH (2003) Yeast interactions and wine flavour. Int J Food Microbiol 86(1):11–22PubMedCrossRefGoogle Scholar
  58. Foerst P, Santivarangkna C (2014) In: Holzapfel W (ed) Advances in starter culture technology: focus on drying processes. Advances in fermented foods and beverages: improving quality, technologies and health benefits. Woodhead Publishing, Cambridge, UK, pp 249–270Google Scholar
  59. Fontán MCG, Martínez S, Franco I, Carballo J (2006) Microbiological and chemical changes during the manufacture of kefir made from cows’ milk, using a commercial starter culture. Int Dairy J 16(7):762–767CrossRefGoogle Scholar
  60. Galle S, Schwab C, Arendt E, Gänzle M (2010) Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58(9):5834–5841PubMedCrossRefGoogle Scholar
  61. Garofalo C, Osimani A, Milanović V, Aquilanti L, De Filippis F, Stellato G, Clementi F (2015) Bacteria and yeast microbiota in milk kefir grains from different Italian regions. Food Microbiol 49:123–133PubMedCrossRefGoogle Scholar
  62. Geis A (2003) Perspectives of genetic engineering of bacteria used in food fermentations. In: Heller KJ (ed) Genetically engineered food: methods and detection. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 100–118CrossRefGoogle Scholar
  63. González-Quijano GK, Dorantes-Alvarez L, Hernández-Sánchez H, Jaramillo-Flores ME, de Jesús Perea-Flores M, Vera-Ponce de León A, Hernández-Rodríguez C (2014) Halotolerance and survival kinetics of lactic acid bacteria isolated from jalapeño pepper (Capsicum annuum L.) fermentation. J Food Sci 79(8):M1545–M1553PubMedCrossRefGoogle Scholar
  64. Greppi A, Krych Ł, Costantini A, Rantsiou K, Hounhouigan DJ, Arneborg N et al (2015) Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains. Int J Food Microbiol 205:81–89PubMedCrossRefGoogle Scholar
  65. Gupta C, Prakash D, Gupta S (2015) A biotechnological approach to microbial based perfumes and flavours. J Microbiol Exp 2(1):00034Google Scholar
  66. Hammes WP, Brandt MJ, Francis KL, Rosenheim J, Seitter MF, Vogelmann SA (2005) Microbial ecology of cereal fermentations. Trends Food Sci Technol 16(1):4–11CrossRefGoogle Scholar
  67. Hansen EB (2002) Commercial bacterial starter cultures for fermented foods of the future. Int J Food Microbiol 78(1):119–131PubMedCrossRefGoogle Scholar
  68. Hayakawa K, Kimura M, Kasaha K, Matsumoto K, Sansawa H, Yamori Y (2004) Effect of a γ-aminobutyric acid-enriched dairy product on the blood pressure of spontaneously hypertensive and normotensive Wistar–Kyoto rats. Br J Nutr 92(3):411–417PubMedCrossRefGoogle Scholar
  69. Hjortmo SB, Hellström AM, Andlid TA (2008) Production of folates by yeasts in Tanzanian fermented togwa. FEMS Yeast Res 8(5):781–787PubMedCrossRefGoogle Scholar
  70. Ho VTT, Zhao J, Fleet GH (2014) Yeasts are essential for cocoa bean fermentation. Int J Food Microbiol 174:72–87PubMedCrossRefGoogle Scholar
  71. Høier E, Janzen T, Henriksen CM, Rattray F, Brockmann E, Johansen E (1999) The production, application and action of lactic cheese starter cultures. In: Law BA (ed) Technology of cheese making. Sheffild Academic Press, Sheffild, pp 99–131Google Scholar
  72. Holzapfel WH (2002) Appropriate starter culture technologies for small-scale fermentation in developing countries. Int J Food Microbiol 75(3):197–212PubMedCrossRefGoogle Scholar
  73. Hou J, Hannon JA, McSweeney PL, Beresford TP, Guinee TP (2017) Effect of galactose metabolising and non-metabolising strains of Streptococcus thermophilus as a starter culture adjunct on the properties of cheddar cheese made with low or high pH at whey drainage. Int Dairy J 65:44–55CrossRefGoogle Scholar
  74. Hugenholtz J, Kleerebezem M, Starrenburg M, Delcour J, de Vos W, Hols P (2000) Lactococcus lactis as a cell factory for high-level diacetyl production. Appl Environ Microbiol 66(9):4112–4114PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hurtado A, Reguant C, Esteve-Zarzoso B, Bordons A, Rozès N (2008) Microbial population dynamics during the processing of Arbequina table olives. Food Res Int 41(7):738–744CrossRefGoogle Scholar
  76. Hutkins RW (ed) (2006) Introduction in microbiology and technology of fermented foods, Blackwell Publishing, Ames, Iowa, USAGoogle Scholar
  77. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. J Food Biochem 40:2931–2944Google Scholar
  78. Jayaram VB, Cuyvers S, Lagrain B, Verstrepen KJ, Delcour JA, Courtin CM (2013) Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor. Food Chem 136(2):301–308PubMedCrossRefGoogle Scholar
  79. Jayaram VB, Cuyvers S, Verstrepen KJ, Delcour JA, Courtin CM (2014) Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chem 151:421–428PubMedCrossRefGoogle Scholar
  80. Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3(12):984–993PubMedCrossRefGoogle Scholar
  81. Kariluoto S, Vahteristo L, Salovaara H, Katina K, Liukkonen KH, Piironen V (2004) Effect of baking method and fermentation on folate content of rye and wheat breads. Cereal Chem 81(1):134–139CrossRefGoogle Scholar
  82. Kariluoto S, Aittamaa M, Korhola M, Salovaara H, Vahteristo L, Piironen V (2006) Effects of yeasts and bacteria on the levels of folates in rye sourdoughs. Int J Food Microbiol 106(2):137–143PubMedCrossRefGoogle Scholar
  83. Katina K, Poutanen K (2013) Nutritional aspects of cereal fermentation with lactic acid bacteria and yeast. In: Handbook on sourdough biotechnology. Springer, USA, pp 229–244CrossRefGoogle Scholar
  84. Katina K, Laitila A, Juvonen R, Liukkonen KH, Kariluoto S, Piironen V, Poutanen K (2007) Bran fermentation as a means to enhance technological properties and bioactivity of rye. Food Microbiol 24(2):175–186PubMedCrossRefGoogle Scholar
  85. Kim JY, Lee MY, Ji GE, Lee YS, Hwang KT (2009) Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int J Food Microbiol 130(1):12–16PubMedCrossRefGoogle Scholar
  86. Kim B, Hong VM, Yang J, Hyun H, Im JJ, Hwang J, Kim JE (2016) A review of fermented foods with beneficial effects on brain and cognitive function. Prev Nutr Food Sci 21(4):297PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kimaryo VM, Massawe GA, Olasupo NA, Holzapfel WH (2000) The use of a starter culture in the fermentation of cassava for the production of “kivunde”, a traditional Tanzanian food product. Int J Food Microbiol 56(2):179–190PubMedCrossRefGoogle Scholar
  88. Kingcha Y, Tosukhowong A, Zendo T, Roytrakul S, Luxananil P, Chareonpornsook K, Visessanguan W (2012) Anti-listeria activity of Pediococcus pentosaceus BCC 3772 and application as starter culture for Nham, a traditional fermented pork sausage. Food Control 25(1):190–196CrossRefGoogle Scholar
  89. Kleerebezem M, Kuipers OP, Smid EJ (2017) Lactic acid bacteria—a continuing journey in science and application. FEMS Microbiol Rev 41(Supp_1):S1–S2PubMedCrossRefGoogle Scholar
  90. Kopermsub P, Yunchalard S (2010) Identification of lactic acid bacteria associated with the production of plaa-som, a traditional fermented fish product of Thailand. Int J Food Microbiol 138(3):200–204PubMedCrossRefGoogle Scholar
  91. Korakli M, Gänzle MG, Vogel RF (2002) Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol 92(5):958–965PubMedCrossRefGoogle Scholar
  92. Kumar P, Chatli MK, Verma AK, Mehta N, Malav OP, Kumar D, Sharma N (2017) Quality, functionality, and shelf life of fermented meat and meat products: a review. Crit Rev Food Sci Nutr 57(13):2844–2856PubMedCrossRefGoogle Scholar
  93. Kumura H, Tanoue Y, Tsukahara M, Tanaka T, Shimazaki K (2004) Screening of dairy yeast strains for probiotic applications. J Dairy Sci 87(12):4050–4056PubMedCrossRefGoogle Scholar
  94. Lacerda CHF, Hayashi C, Soares CM, Boscolo WR, Kavata LCB (2005) Replacement of corn Zea mays L. by cassava Manihot esculenta crants meal in grass-carp Ctenopharyngodon idella fingerlings diets. Acta Sci Anim Sci 27(2):241–245CrossRefGoogle Scholar
  95. Ladero V, del Rio B, Linares DM, Fernandez M, Mayo B, Martin MC, Alvarez MA (2014) Genome sequence analysis of the biogenic amine-producing strain Lactococcus lactis subsp. cremoris CECT 8666 (formerly GE2-14). Genome Announc 2(5):e01088–e01014PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lamontanara A, Orrù L, Cattivelli L, Russo P, Spano G, Capozzi V (2014) Genome sequence of Oenococcus oeni OM27, the first fully assembled genome of a strain isolated from an Italian wine. Genome Announc 2(4):e00658–e00614PubMedPubMedCentralCrossRefGoogle Scholar
  97. Landete JM (2017) A review of food-grade vectors in lactic acid bacteria: from the laboratory to their application. Crit Rev Biotechnol 37(3):296–308PubMedCrossRefGoogle Scholar
  98. LeBlanc JG, Milani C, de Giori GS, Sesma F, Van Sinderen D, Ventura M (2013) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol 24(2):160–168PubMedCrossRefGoogle Scholar
  99. Lee JS, Heo GY, Lee JW, Oh YJ, Park JA, Park YH, Ahn JS (2005) Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int J Food Microbiol 102(2):143–150PubMedCrossRefGoogle Scholar
  100. Lefeber T, Papalexandratou Z, Gobert W, Camu N, De Vuyst L (2012) On-farm implementation of a starter culture for improved cocoa bean fermentation and its influence on the flavour of chocolates produced thereof. Food Microbiol 30:379–392PubMedCrossRefGoogle Scholar
  101. Leite AMO, Mayo B, Rachid CTCC, Peixoto RS, Silva JT, Paschoalin VMF, Delgado S (2012) Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol 31(2):215–221PubMedPubMedCentralCrossRefGoogle Scholar
  102. Leroy F, De Vuyst L (2004) Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci Technol 15(2):67–78CrossRefGoogle Scholar
  103. Leroy F, Verluyten J, De Vuyst L (2006) Functional meat starter cultures for improved sausage fermentation. Int J Food Microbiol 106(3):270–285PubMedCrossRefGoogle Scholar
  104. Limsowtin GKY, Powell IB, Parente E (1996) Types of starters. In: Cogan TM, Accolas JE (eds) Dairy starter cultures. VCH, New York, pp 101–129Google Scholar
  105. London LEE, Chaurin V, Auty MAE, Fenelon MA, Fitzgerald GF, Ross RP, Stanton C (2015) Use of Lactobacillus mucosae DPC 6426, an exopolysaccharide-producing strain, positively influences the techno-functional properties of yoghurt. Int Dairy J 40:33–38CrossRefGoogle Scholar
  106. Lortal S, Chapot-Chartier MP (2005) Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int Dairy J 15(6):857–871CrossRefGoogle Scholar
  107. Magalhães KT, Pereira GDM, Dias DR, Schwan RF (2010) Microbial communities and chemical changes during fermentation of sugary Brazilian kefir. World J Microbiol Biotechnol 26(7):1241–1250PubMedCrossRefGoogle Scholar
  108. Malisorn C, Suntornsuk W (2008) Optimization of β-carotene production by Rhodotorula glutinis DM28 in fermented radish brine. Bioresour Technol 99(7):2281–2287PubMedCrossRefGoogle Scholar
  109. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligne B, Smid EJ (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102PubMedCrossRefGoogle Scholar
  110. Martín B, Jofré A, Garriga M, Pla M, Aymerich T (2006) Rapid quantitative detection of Lactobacillus sakei in meat and fermented sausages by real-time PCR. Appl Environ Microbiol 72(9):6040–6048PubMedPubMedCentralCrossRefGoogle Scholar
  111. Masoud W, Jespersen L (2006) Pectin degrading enzymes in yeasts involved in fermentation of Coffea arabica in East Africa. Int J Food Microbiol 110:291–296PubMedCrossRefGoogle Scholar
  112. Matthews A, Grimaldi A, Walker M, Bartowsky E, Grbin P, Jiranek V (2004) Lactic acid bacteria as a potential source of enzymes for use in vinification. Appl Environ Microbiol 70(10):5715–5731PubMedPubMedCentralCrossRefGoogle Scholar
  113. Maturano YP, Nally MC, Toro ME, De Figueroa LIC, Combina M, Vazquez F (2012) Monitoring of killer yeast populations in mixed cultures: influence of incubation temperature of microvinifications samples. World J Microbiol Biotechnol 28(11):3135–3142PubMedCrossRefGoogle Scholar
  114. Mauriello G, Casaburi A, Blaiotta G, Villani F (2004) Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Sci 67(1):149–158PubMedCrossRefGoogle Scholar
  115. McGovern PE, Zhang J, Tang J, Zhang Z, Hall GR, Moreau RA, Cheng G (2004) Fermented beverages of pre-and proto-historic China. Proc Natl Acad Sci U S A 101(51):17593–17598PubMedPubMedCentralCrossRefGoogle Scholar
  116. McSweeney PL, Sousa MJ (2000) Biochemical pathways for the production of flavour compounds in cheeses during ripening: a review. Lait 80(3):293–324CrossRefGoogle Scholar
  117. Michaylova M, Minkova S, Kimura K, Sasaki T, Isawa K (2007) Isolation and characterization of Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus from plants in Bulgaria. FEMS Microbiol Lett 269(1):160–169PubMedCrossRefGoogle Scholar
  118. Mohammadi R, Sohrabvandi S, Mohammad Mortazavian A (2012) The starter culture characteristics of probiotic microorganisms in fermented milks. Eng Life Sci 12:399–409CrossRefGoogle Scholar
  119. Mokoena MP (2017) Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules 22(8):1255CrossRefGoogle Scholar
  120. Montaño A, Sánchez AH, Casado FJ, de Castro A, Rejano L (2003) Chemical profile of industrially fermented green olives of different varieties. Food Chem 82:297–302CrossRefGoogle Scholar
  121. Montel MC, Buchin S, Mallet A, Delbes-Paus C, Vuitton DA, Desmasures N, Berthier F (2014) Traditional cheeses: rich and diverse microbiota with associated benefits. Int J Food Microbiol 177:136–154PubMedCrossRefGoogle Scholar
  122. Moslehi-Jenabian S, Lindegaard L, Jespersen L (2010) Beneficial effects of probiotic and food borne yeasts on human health. Forum Nutr 2(4):449–473Google Scholar
  123. Mukdsi MCA, Haro C, González SN, Medina RB (2013) Functional goat milk cheese with feruloyl esterase activity. J Funct Foods 5(2):801–809CrossRefGoogle Scholar
  124. Newberry MP, Phan-Thien N, Larroque OR, Tanner RI, Larsen NG (2002) Dynamic and elongation rheology of yeasted bread doughs. Cereal Chem 79(6):874CrossRefGoogle Scholar
  125. Nguyen TTT, Loiseau G, Icard-Vernière C, Rochette I, Trèche S, Guyot JP (2007) Effect of fermentation by amylolytic lactic acid bacteria, in process combinations, on characteristics of rice/soybean slurries: a new method for preparing high energy density complementary foods for young children. Food Chem 100(2):623–631CrossRefGoogle Scholar
  126. Nielsen DS, Teniola OD, Ban-Koffi L, Owusu M, Andersson TS, Holzapfel WH (2007) The microbiology of Ghanaian cocoa fermentations analysed using culture-dependent and culture-independent methods. Int J Food Microbiol 114:168–186PubMedCrossRefGoogle Scholar
  127. Nout MR (2003) 17 Traditional fermented products from Africa, Latin America and Asia. In: Boekhout T, Robert V (eds) Yeasts in Food-Beneficial and Detrimental Aspects. Behr's-Verlag GmbH & Co. KG, Hamburg, Germany pp 451–473CrossRefGoogle Scholar
  128. Ogunremi OR, Sanni AI, Agrawal R (2015) Probiotic potentials of yeasts isolated from some cereal-based Nigerian traditional fermented food products. J Appl Microbiol 119(3):797–808PubMedCrossRefGoogle Scholar
  129. Oguntoyinbo FA, Tourlomousis P, Gasson MJ, Narbad A (2011) Analysis of bacterial communities of traditional fermented West African cereal foods using culture independent methods. Int J Food Microbiol 145(1):205–210PubMedCrossRefGoogle Scholar
  130. Ong L, Henriksson A, Shah NP (2006) Development of probiotic cheddar cheese containing Lactobacillus acidophilus, Lb. casei, Lb. paracasei and Bifidobacterium spp. and the influence of these bacteria on proteolytic patterns and production of organic acid. Int Dairy J 16(5):446–456CrossRefGoogle Scholar
  131. Padilla B, Manzanares P, Belloch C (2014) Yeast species and genetic heterogeneity within Debaryomyces hansenii along the ripening process of traditional ewes’ and goats’ cheeses. Food Microbiol 38:160–166PubMedCrossRefGoogle Scholar
  132. Páez-Lerma JB, Arias-García A, Rutiaga-Quiñones OM, Barrio E, Soto-Cruz NO (2013) Yeasts isolated from the alcoholic fermentation of Agave duranguensis during mezcal production. Food Biotechnol 27(4):342–356CrossRefGoogle Scholar
  133. Papalexandratou Z, De Vuyst L (2011) Assessment of the yeast species composition of cocoa bean fermentations in different cocoa-producing regions using denaturing gradient gel electrophoresis. FEMS Yeast Res 11(7):564–574PubMedCrossRefGoogle Scholar
  134. Paramithiotis S, Chouliaras Y, Tsakalidou E, Kalantzopoulos G (2005) Application of selected starter cultures for the production of wheat sourdough bread using a traditional three-stage procedure. Process Biochem 40(8):2813–2819CrossRefGoogle Scholar
  135. Parente E, Cogan TM (2004) Starter cultures: general aspects. In: Fox PF, McSweeney PLH, Cogan TM, Guinee TP (eds) Cheese: chemistry, physics and microbiology, 3rd edn. Elsevier, London, pp 123–148CrossRefGoogle Scholar
  136. Park KB, Oh SH (2006) Isolation and characterization of Lactobacillus buchneri strains with high γ-aminobutyric acid producing capacity from naturally aged cheese. Food Sci Biotechnol 15:86–90Google Scholar
  137. Patel A, Shah N, Prajapati JB (2013) Biosynthesis of vitamins and enzymes in fermented foods by lactic acid bacteria and related genera-A promising approach. Croat J Food Sci Technol 5(2):85–91Google Scholar
  138. Patrignani F, Lucci L, Vallicelli M, Guerzoni ME, Gardini F, Lanciotti R (2007) Role of surface-inoculated Debaryomyces hansenii and Yarrowia lipolytica strains in dried fermented sausage manufacture. Part 1: evaluation of their effects on microbial evolution, lipolytic and proteolytic patterns. Meat Sci 75:676–686PubMedCrossRefGoogle Scholar
  139. Petrova PM, Petrov KK (2011) Antimicrobial activity of starch degrading Lactobacillus strains isolated from boza. Biotechnol Biotechnol Equip 25:114–116CrossRefGoogle Scholar
  140. Petrova P, Petrov K, Stoyancheva G (2013) Starch-modifying enzymes of lactic acid bacteria–structures, properties, and applications. Starch-Stärke 65(1–2):34–47CrossRefGoogle Scholar
  141. Pistarino E, Aliakbarian B, Casazza AA, Paini M, Cosulich ME, Perego P (2013) Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chem 138:2043–2049PubMedCrossRefGoogle Scholar
  142. Poutanen K, Flander L, Katina K (2009) Sourdough and cereal fermentation in a nutritional perspective. Food Microbiol 26(7):693–699PubMedCrossRefGoogle Scholar
  143. Powell IB, Broome MC, Limsowtin GKY (2011) Cheese: starter cultures: specific properties. In: Fuquay JW, Fox PF, McSweeney PLH (eds) Encyclopedia of dairy sciences. Elsevier Academic, Amsterdam, pp 559–566Google Scholar
  144. Psani M, Kotzekidou P (2006) Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J Microbiol Biotechnol 22(12):1329–1336CrossRefGoogle Scholar
  145. Purriños L, Carballo J, Lorenzo JM (2013) The influence of Debaryomyces hansenii, Candida deformans and Candida zeylanoides on the aroma formation of dry-cured ‘lacón’. Meat Sci 93:344–350PubMedCrossRefGoogle Scholar
  146. Rad AH, Khosroushahi AY, Khalili M, Jafarzadeh S (2016) Folate bio-fortification of yoghurt and fermented milk: a review. Dairy Sci Technol 96(4):427–441CrossRefGoogle Scholar
  147. Rai AK, Jeyaram K (2015) Health benefits of functional proteins in fermented foods. In: Tamang JP (ed) Health benefits of fermented foods and beverages. CRC Press, London, New York, pp 455–474Google Scholar
  148. Ray RC, Sivakumar PS (2009) Traditional and novel fermented foods and beverages from tropical root and tuber crops. Int J Food Sci Technol 44(6):1073–1087CrossRefGoogle Scholar
  149. Ray M, Ghosh K, Singh S, Mondal KC (2016) Folk to functional: an explorative overview of rice-based fermented foods and beverages in India. J Ethn Foods 3(1):5–18CrossRefGoogle Scholar
  150. Reddy G, Altaf MD, Naveena BJ, Venkateshwar M, Kumar EV (2008) Amylolytic bacterial lactic acid fermentation—a review. Biotechnol Adv 26(1):22–34PubMedCrossRefGoogle Scholar
  151. Rhee SJ, Lee JE, Lee CH (2011) Importance of lactic acid bacteria in Asian fermented foods. Microb Cell Factories 10(1):S5CrossRefGoogle Scholar
  152. Romano P, Capece A, Jespersen L (2006) Taxonomic and ecological diversity of foods and beverage yeasts. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Berlin, pp 13–54CrossRefGoogle Scholar
  153. Ruiz‐Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F (2017) Lactic Acid Bacteria. In: Wittmann C, Liao JC (eds) Industrial Biotechnology: Microorganisms. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, pp 395–451 CrossRefGoogle Scholar
  154. Rul F, Zagorec M, Champomier-Vergès MC (2013) Lactic acid bacteria in fermented foods. In: Proteomics in foods. Springer, USA, pp 261–283CrossRefGoogle Scholar
  155. Saarela M, Mogensen G, Fondén R, Mättö J, Mattila-Sandholm T (2000) Probiotic bacteria: safety, functional and technological properties. J Biotechnol 84(3):197–215PubMedCrossRefGoogle Scholar
  156. Saithong P, Panthavee W, Boonyaratanakornkit M, Sikkhamondhol C (2010) Use of a starter culture of lactic acid bacteria in plaa-som, a Thai fermented fish. J Biosci Bioeng 110(5):553–557PubMedCrossRefGoogle Scholar
  157. Sanchez AH, Rejano L, Montano A, de Castro A (2001) Utilization at high pH of starter cultures of lactobacilli for Spanish-style green olive fermentation. Int J Food Microbiol 67(1–2):115–122PubMedCrossRefGoogle Scholar
  158. Sánchez-Molinero F, Arnau J (2008) Effect of the inoculation of a starter culture and vacuum packaging during the resting stage on sensory traits of dry-cured ham. Meat Sci 80:1074–1080PubMedCrossRefGoogle Scholar
  159. Santivarangkna C, Kulozik U, Foerst P (2007) Alternative drying processes for the industrial preservation of lactic acid starter cultures. Biotechnol Prog 23(2):302–315PubMedCrossRefGoogle Scholar
  160. Saubade F, Hemery YM, Guyot JP, Humblot C (2017) Lactic acid fermentation as a tool for increasing the folate content of foods. Crit Rev Food Sci Nutr 57:3894–3910PubMedCrossRefGoogle Scholar
  161. Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:129–170PubMedGoogle Scholar
  162. Selhub EM, Logan AC, Bested AC (2014) Fermented foods, microbiota, and mental health: ancient practice meets nutritional psychiatry. J Physiol Anthropol 33(1):2PubMedPubMedCentralCrossRefGoogle Scholar
  163. Seok JH, Park KB, Kim YH, Bae MO, Lee MK, Oh SH (2008) Production and characterization of kimchi with enhanced levels of γ-aminobutyric acid. Food Sci Biotechnol 17(5):940–946Google Scholar
  164. Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol 334(3):229–236PubMedCrossRefGoogle Scholar
  165. Silva CF, Vilela DM, de Souza Cordeiro C, Duarte WF, Dias DR, Schwan RF (2013) Evaluation of a potential starter culture for enhance quality of coffee fermentation. World J Microbiol Biotechnol 29:235–247PubMedCrossRefGoogle Scholar
  166. Singracha P, Niamsiri N, Visessanguan W, Lertsiri S, Assavanig A (2017) Application of lactic acid bacteria and yeasts as starter cultures for reduced-salt soy sauce (moromi) fermentation. LWT Food Sci Technol 78:181–188CrossRefGoogle Scholar
  167. Smid EJ, Kleerebezem M (2014) Production of aroma compounds in lactic fermentations. Annu Rev Food Sci Technol 5:313–326PubMedCrossRefGoogle Scholar
  168. Smit G, Smit BA, Engels WJ (2005) Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev 29(3):591–610PubMedCrossRefGoogle Scholar
  169. Sodini I, Lucas A, Oliveira MN, Remeuf F, Corrieu G (2002) Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing. J Dairy Sci 85(10):2479–2488PubMedCrossRefGoogle Scholar
  170. Speranza B, Bevilacqua A, Corbo MR, Sinigaglia M (eds) (2016) Starter cultures in food production. Wiley, HobokenGoogle Scholar
  171. Steinkraus KH (2002) Fermentations in world food processing. Compr Rev Food Sci Food Saf 1(1):23–32CrossRefGoogle Scholar
  172. Takeshima K, Yamatsu A, Yamashita Y, Watabe K, Horie N, Masuda K, Kim M (2014) Subchronic toxicity evaluation of γ-aminobutyric acid (GABA) in rats. Food Chem Toxicol 68:128–134PubMedCrossRefGoogle Scholar
  173. Tamang JP, Fleet GH (2009) Yeasts diversity in fermented foods and beverages. In: Yeast biotechnology: diversity and applications. Springer, Netherlands, pp 169–198CrossRefGoogle Scholar
  174. Tamang JP, Kailasapathy K (eds) (2010) Fermented foods and beverages of the world. CRC Press, New YorkGoogle Scholar
  175. Tamang JP, Tamang B, Schillinger U, Franz CM, Gores M, Holzapfel WH (2005) Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. Int J Food Microbiol 105(3):347–356PubMedCrossRefGoogle Scholar
  176. Tamang JP, Watanabe K, Holzapfel WH (2016) Diversity of microorganisms in global fermented foods and beverages. Front Microbiol 7:377PubMedPubMedCentralGoogle Scholar
  177. Tamime AY, Thomas L (eds) (2017) Probiotic dairy products. Wiley, HobokenGoogle Scholar
  178. Tapsell LC (2015) Fermented dairy food and CVD risk. Br J Nutr 113(S2):S131–S135PubMedCrossRefGoogle Scholar
  179. Taskila S (2016) Industrial production of starter cultures. In: Speranza B, Bevilacqua A, Corbo MR, Sinigaglia M (eds.) Starter Cultures in Food Production. John Wiley & Sons., Chichester, United States, pp 79–100 Google Scholar
  180. Teniola OD, Odunfa SA (2001) The effects of processing methods on the levels of lysine, methionine and the general acceptability of ogi processed using starter cultures. Int J Food Microbiol 63(1–2):1–9PubMedCrossRefGoogle Scholar
  181. Tornadijo ME, Fresno JM, Sarmiento RM, Carballo J (1998) Study of the yeasts during the ripening process of Armada cheeses from raw goat’s milk. Lait 78(6):647–659CrossRefGoogle Scholar
  182. Treven P, Trmčić A, Matijašić BB, Rogelj I (2014) Improved draft genome sequence of probiotic strain Lactobacillus gasseri K7. Genome Announc 2(4):e00725–e00714PubMedPubMedCentralCrossRefGoogle Scholar
  183. Tsai JS, Lin YS, Pan BS, Chen TJ (2006) Antihypertensive peptides and γ-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochem 41(6):1282–1288CrossRefGoogle Scholar
  184. Udomsil N, Rodtong S, Choi YJ, Hua Y, Yongsawatdigul J (2011) Use of Tetragenococcus halophilus as a starter culture for flavor improvement in fish sauce fermentation. J Agric Food Chem 59(15):8401–8408PubMedCrossRefGoogle Scholar
  185. Valyasevi R, Rolle RS (2002) An overview of small-scale food fermentation technologies in developing countries with special reference to Thailand: scope for their improvement. Int J Food Microbiol 75(3):231–239PubMedCrossRefGoogle Scholar
  186. Viljoen BC (2001) The interaction between yeasts and bacteria in dairy environments. Int J Food Microbiol 69(1):37–44PubMedCrossRefGoogle Scholar
  187. Viljoen B (2006) Yeast ecological interactions. Yeast’ yeast, yeast’ bacteria, yeast’ fungi interactions and yeasts as biocontrol agents. In: Yeasts in food and beverages. Springer, Berlin, pp 83–110CrossRefGoogle Scholar
  188. Vrancken G, De Vuyst L, Van der Meulen R, Huys G, Vandamme P, Daniel HM (2010) Yeast species composition differs between artisan bakery and spontaneous laboratory sourdoughs. FEMS Yeast Res 10(4):471–481PubMedCrossRefGoogle Scholar
  189. Wacher C, Cañas A, Bárzana E, Lappe P, Ulloa M, Owens JD (2000) Microbiology of Indian and Mestizo pozol fermentations. Food Microbiol 17(3):251–256CrossRefGoogle Scholar
  190. Wah TT, Walaisri S, Assavanig A, Niamsiri N, Lertsiri S (2013) Co-culturing of Pichia guilliermondii enhanced volatile flavor compound formation by Zygosaccharomyces rouxii in the model system of Thai soy sauce fermentation. Int J Food Microbiol 160(3):282–289PubMedCrossRefGoogle Scholar
  191. Welman AD, Maddox IS (2003) Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol 21(6):269–274PubMedCrossRefGoogle Scholar
  192. Wood BJ (2012) Microbiology of fermented foods. Blackie Academic & Professional, LondonGoogle Scholar
  193. Xiong T, Li X, Guan Q, Peng F, Xie M (2014) Starter culture fermentation of Chinese sauerkraut: growth, acidification and metabolic analyses. Food Control 41:122–127CrossRefGoogle Scholar
  194. Yépez L, Tenea GN (2015) Genetic diversity of lactic acid bacteria strains towards their potential probiotic application. Rom Biotechnol Lett 20(2):10191–10199Google Scholar
  195. Zhang ZY, Liu C, Zhu YZ, Wei YX, Tian F, Zhao GP, Guo XK (2012) Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome. Int J Food Microbiol 153(1):166–170PubMedCrossRefGoogle Scholar
  196. Zhao L, Li Y, Jiang L, Deng F (2016) Determination of fungal community diversity in fresh and traditional Chinese fermented pepper by pyrosequencing. Microbiol Lett 363(24):fnw273CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Sujatha Kandasamy
    • 1
  • Digambar Kavitake
    • 1
  • Prathapkumar Halady Shetty
    • 1
  1. 1.Department of Food Science and TechnologyPondicherry UniversityPondicherryIndia

Personalised recommendations