Advertisement

Global Urbanization—Perspective from Space

  • Michael WurmEmail author
Conference paper

Abstract

Since a decade, more than half of the world’s population lives in cities. This trend is expected to be continued in the upcoming decades, transforming our world into an urban planet. Especially urban regions in Asia and Africa will experience tremendous urban growth. Earth observation data provide unique possibilities in urban research for analyzing global urbanization processes due to a wide spectrum of satellites such as by the European Copernicus Programme providing large-area satellite data for monitoring urban change processes. Besides, also on a local scale, high resolution satellite imagery provides invaluable information for characterizing the physical urban environment, allowing for a qualitative mapping of the state of urban neighborhoods in the context of urban poverty. This paper provides an overview on global urbanization processes, the data toolbox of satellites for their analysis and selected applications to demonstrate the usefulness of satellite images for urban research.

Keywords

Urban remote sensing Urban geography Urbanization Urban poverty 

Notes

Acknowledgements

The author greatly acknowledges the provision of the WorldView-3 image of Shanghai by European Space Imaging.

References

  1. 1.
    Arimah BC (2010) The face of urban poverty. UNU-WIDER, United Nations University (Working paper No. 2010/30). https://www.wider.unu.edu/sites/default/files/wp2010-30.pdf. Accessed 16 Jan 2018
  2. 2.
    Casu F, Manunta M, Agram PS, Crippen RE (2017) Big remotely sensed data: tools, applications and experiences. Remote Sense Environ 202:1–2CrossRefGoogle Scholar
  3. 3.
    Esch T, Taubenböck H, Roth A et al (2012) TanDEM-X mission—new perspectives for the inventory and monitoring of global settlement patterns. IEEE J Sel Top Appl 6(1):061702-1–061702-21Google Scholar
  4. 4.
    Giradet H (1996) Das Zeitalter der Städte. Neue Wege für eine nachhaltige Stadtentwicklung, Deukalion, HolmGoogle Scholar
  5. 5.
    Glaeser E (2011) Triumph of the city—how our greatest invention makes us richer, smarter, greener, healthier, and happier. Penguin Books, New YorkGoogle Scholar
  6. 6.
    Klotz M, Wurm M, Taubenböck H (2015) Der Werkzeugkasten der urbanen Fernerkundung—Daten und Produkte. In: Taubenböck H, Wurm M, Esch T, Dech S (eds) Globale Urbanisierung, Perspektive aus dem All. Springer Spektrum, Berlin Heidelberg, pp 29–38Google Scholar
  7. 7.
    Kuffer M, Pfeffer K, Sliuzas R et al (2017) Capturing the diversity of deprived areas with image-based features: the case of Mumbai. Remote Sens-Basel 9(4):384CrossRefGoogle Scholar
  8. 8.
    NBS (National Bureau of Statistics of China) (2016): Total resident population. http://data.stats.gov.cn/english/easyquery.htm?cn=E0103. Accessed 12 Jan 2018
  9. 9.
    OECD (2010) Cities and climate change. OECD Publishing, ParisCrossRefGoogle Scholar
  10. 10.
    Pesaresi M, Ehrlich D, Ferri S et al (2016) Operating procedure for the production of the global human settlement layer from landsat data of the epochs 1975, 1990, 2000, and 2014. http://publications.jrc.ec.europa.eu/repository/handle/JRC97705. Accessed 16 Jan 2018
  11. 11.
    Saunders D (2014) Arrival city—the final migration and our next world. Karl Blessing Verlag, MünchenGoogle Scholar
  12. 12.
    Schneider A, Friedl MA, Potere D (2009) A new map of global urban extent from MODIS satellite data. Environ. Res. Lett. 4(4):044003CrossRefGoogle Scholar
  13. 13.
    Siedentop S (2015) Ursachen, Ausprägungen und Wirkungen der globalen Urbanisierung—ein Überblick. In: Taubenböck H, Wurm M, Esch T, Dech S (eds) Globale Urbanisierung, Perspektive aus dem All. SpringerSpektrum, Berlin Heidelberg, pp 11–22Google Scholar
  14. 14.
    Taubenböck H, Wiesner M, Felbier A et al (2014) New dimensions of urban landscapes: the spatio-temporal evolution from a polynuclei area to a mega-region based on remote sensing data. Appl Geogr 47:137–153CrossRefGoogle Scholar
  15. 15.
    Taubenböck H, Kraff N (2014) The physical face of slums: a structural comparison of slums in Mumbai, India, based on remotely sensed data. J Hous Built Environ 29(1):15–38CrossRefGoogle Scholar
  16. 16.
    Taubenböck H (2015) Ohne Limit? Die Expansion von Megacities. In: Taubenböck H, Wurm M, Esch T, Dech S (eds) Globale Urbanisierung, Perspektive aus dem All. SpringerSpektrum, Berlin Heidelberg, pp 49–58Google Scholar
  17. 17.
    United Nations (2014): World urbanization prospects. https://esa.un.org/unpd/wup/Publications/Files/WUP2014-Highlights.pdf
  18. 18.
    United Nations General Assembly (2015): Resolution adopted by the General Assembly on 25 September 2015, 70/1. Transforming our world: the 2030 Agenda for Sustainable Development. http://www.un.org/ga/search/view_doc.asp?symbol=A/RES/70/1&Lang=E. Accessed 16 Jan 2018
  19. 19.
    Wei C, Taubenböck H, Blaschke T (2017) Measuring urban agglomeration using a city-scale dasymetric population map: a study in the Pearl River Delta, China. Habitat Int 59:32–43CrossRefGoogle Scholar
  20. 20.
    World Bank (2014): Urban Development Overview. http://www.worldbank.org/en/topic/urbandevelopment/overview. Accessed 15 Jan 2018
  21. 21.
    Wurm M, Taubenböck H, Schardt M et al (2011) Object-based image information fusion using multisensor earth observation data over urban areas. Int J Image Data Fus 2(2):121–147CrossRefGoogle Scholar
  22. 22.
    Wurm M, Taubenböck H, Weigand M, Schmitt A (2017) Slum mapping in polarimetric SAR data using spatial features. Remote Sense Environ 194:190–204CrossRefGoogle Scholar
  23. 23.
    Wurm M, Taubenböck H (2018) Detecting social groups from space—assessment of remote sensing-based mapped morphological slums using income data. Remote Sens Lett 9(1):41–50CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.German Aerospace Center (DLR)Earth Observation Center (EOC)OberpfaffenhofenGermany

Personalised recommendations