Using Coq for Formal Modeling and Verification of Timed Connectors

  • Weijiang Hong
  • M. Saqib Nawaz
  • Xiyue Zhang
  • Yi Li
  • Meng SunEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10729)


Formal modeling and verification of connectors in component-based software systems are getting more interest with recent advancements and evolution in modern software systems. In this paper, we use the proof assistant Coq for modeling and verification of timed connectors. We first present the definition of timed channels and the composition operators for constructing timed connectors in Coq. Basic timed channels are interpreted as axioms and inference rules are used for the specification of composition operators. Furthermore, timed connectors being built by composing basic timed/untimed channels, are defined as logical predicates which describe the relations between inputs and outputs. Within this framework, timed connector properties can be naturally formalized and proved in Coq.


Reo Timed connector Coq Modeling Verification 



The work was partially supported by the National Natural Science Foundation of China under grant no. 61772038, 61532019, 61202069 and 61272160.


  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed component connectors. In: Proceedings of SEFM 2004, pp. 198–207. IEEE Computer Society (2004)Google Scholar
  3. 3.
    Arbab, F., Rutten, J.: A coinductive calculus of component connectors. Technical report, SEN-R0216, CWI, Amsterdam (2002)Google Scholar
  4. 4.
    Baier, C., Blechmann, T., Klein, J., Klüppelholz, S., Leister, W.: Design and verification of systems with exogenous coordination using vereofy. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp. 97–111. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  5. 5.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bertot, Y., Casteran, P.: Interactive Theorem Proving and Program Development. Coq‘Art: The Calculus of Inductive Construction. Texts in Theoretical Computer Science. An EATCS Series. Springer, Heidelberg (2003). zbMATHGoogle Scholar
  7. 7.
    Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  8. 8.
    Clarke, D., Costa, D., Arbab, F.: Connector coloring I: synchronization and context dependency. Sci. Comput. Program. 66(3), 205–225 (2007)CrossRefzbMATHGoogle Scholar
  9. 9.
    Coq Implementation of Connectors.
  10. 10.
    Diakov, N., Arbab, F.: Compositional construction of web services using Reo. In: Proceedings of International Workshop on Web Services: Modeling, Architecture and Infrastructure (ICEIS 2004), pp. 13–14. INSTIC Press (2004)Google Scholar
  11. 11.
    Gelernter, D., Carriero, N.: Coordination languages and their significance. Coomun. ACM 35(2), 96 (1992)CrossRefGoogle Scholar
  12. 12.
    Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant a tutorial. Rapport Technique, 178 (1997)Google Scholar
  13. 13.
    Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci. Ann. Comp. Sci. 22(1), 201–251 (2012)MathSciNetGoogle Scholar
  14. 14.
    Khosravi, R., Sirjani, M., Asoudeh, N., Sahebi, S., Iravanchi, H.: Modeling and analysis of Reo connectors using alloy. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 169–183. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  15. 15.
    Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: a framework for model-checking dataflow in service compositions. Formal Aspects Comput. 24, 187–216 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, Y., Sun, M.: Modeling and verification of component connectors in Coq. Sci. Comput. Program. 113(3), 285–301 (2015)CrossRefGoogle Scholar
  17. 17.
    Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). zbMATHGoogle Scholar
  18. 18.
    Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In: Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg (1992). Google Scholar
  19. 19.
    Sun, M.: Connectors as designs: the time dimension. In: Proceedings of TASE 2012, pp. 201–208. IEEE Computer Society (2012)Google Scholar
  20. 20.
    Sun, M., Arbab, F.: Web services choreography and orchestration in Reo and constraint automata. In: Proceedings of SAC 2007, pp. 346–353. ACM (2007)Google Scholar
  21. 21.
    Sun, M., Arbab, F., Aichernig, B.K., Astefanoaei, L., de Boer, F.S., Rutten, J.: Connectors as designs: modeling, refinement and test case generation. Sci. Comput. Program. 77(7–8), 799–822 (2012)zbMATHGoogle Scholar
  22. 22.
    Zhang, X., Hong, W., Li, Y., Sun, M.: Reasoning about connectors in Coq. In: Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 172–190. Springer, Cham (2017). CrossRefGoogle Scholar
  23. 23.
    Zlatev, Z., Diakov, N., Porkaev, S.: Construction of negotiation protocols for e-commerce applications. ACM SIGecom Exch. 5(2), 12–22 (2004)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Weijiang Hong
    • 1
  • M. Saqib Nawaz
    • 1
  • Xiyue Zhang
    • 1
  • Yi Li
    • 1
  • Meng Sun
    • 1
    Email author
  1. 1.Department of Informatics and LMAM, School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations