Skip to main content

Approximated Stability Analysis of Bi-modal Hybrid Co-simulation Scenarios

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10729))

Abstract

Co-simulation is a technique to orchestrate multiple simulators in order to approximate the behavior of a coupled system as a whole. Simulators execute in a lockstep fashion, each exchanging inputs and output data points with the other simulators at pre-accorded times.

In the context of systems with a physical and a cyber part, the communication frequency with which the simulators of each part communicate can have a negative impact in the accuracy of the global simulation results. In fact, the computed behavior can be qualitatively different, compared to the actual behavior of the original system, laying waste to potentially many hours of computation. It is therefore important to develop methods that answer whether a given communication frequency guarantees trustworthy co-simulation results.

In this paper, we take a small step in that direction. We develop a technique to approximate the lowest frequency for which a particular set of simulation tools can exchange values in a co-simulation and obtain results that can be trusted.

This work has been done under the framework of the COST Action IC1404 – Multi-Paradigm Modelling for Cyber-Physical Systems (MPM4CPS), and partially supported by Flanders Make vzw, the strategic research centre for the manufacturing industry, and Ph.D. fellowship grants from the Agency for Innovation by Science and Technology in Flanders (IWT, dossier 151067).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   107.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://msdl.cs.mcgill.ca/people/claudio/projs/AnalysisCart.zip.

References

  1. Arnold, M.: Stability of sequential modular time integration methods for coupled multibody system models. J. Comput. Nonlinear Dyn. 5(3), 9 (2010)

    Article  Google Scholar 

  2. Bertsch, C., Ahle, E., Schulmeister, U.: The Functional Mockup Interface-seen from an industrial perspective. In: 10th International Modelica Conference (2014)

    Google Scholar 

  3. Blockwitz, T., Otter, M., Akesson, J., Arnold, M., Clauss, C., Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J., Neumerkel, D., Olsson, H., Viel, A.: Functional Mockup Interface 2.0: the standard for tool independent exchange of simulation models. In: 9th International Modelica Conference, pp. 173–184. Linköping University Electronic Press, Munich, November 2012

    Google Scholar 

  4. Branicky, M.: Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 475–482 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  5. Busch, M.: Continuous approximation techniques for co-simulation methods: analysis of numerical stability and local error. ZAMM - J. Appl. Math. Mech. 96(9), 1061–1081 (2016)

    Article  MathSciNet  Google Scholar 

  6. Cellier, F.E., Kofman, E.: Continuous System Simulation. Springer Science & Business Media, New York (2006). https://doi.org/10.1007/0-387-30260-3

    MATH  Google Scholar 

  7. Cremona, F., Lohstroh, M., Broman, D., Di Natale, M., Lee, E.A., Tripakis, S.: Step revision in hybrid co-simulation with FMI. In: 14th ACM-IEEE International Conference on formal Methods and Models for System Design, Kanpur, India (2016)

    Google Scholar 

  8. Friedman, J., Ghidella, J.: Using model-based design for automotive systems engineering - requirements analysis of the power window example. SAE Technical Paper, April 2006

    Google Scholar 

  9. Goebel, R., Sanfelice, R.G., Teel, A.R.: Hybrid Dynamical Systems: Modeling, Stability and Robustness. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  10. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: state of the art. Technical report, February 2017. arXiv:1702.00686

  11. Kalmar-Nagy, T., Stanciulescu, I.: Can complex systems really be simulated? Appl. Math. Comput. 227, 199–211 (2014)

    Google Scholar 

  12. Karalis, P., Navarro-López, E.M.: Feedback stability for dissipative switched systems. In: Proceedings of 20th IFAC World Congress. IFAC, Toulouse (2017, to appear)

    Google Scholar 

  13. Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Upper Saddle River (1996)

    Google Scholar 

  14. Liberzon, D.: Switching in Systems and Control. Springer Science & Business Media, Boston (2012). https://doi.org/10.1007/978-1-4612-0017-8

    MATH  Google Scholar 

  15. Lygeros, J., Johansson, K., Simic, S., Zhang, J., Sastry, S.: Dynamical properties of hybrid automata. IEEE Trans. Autom. Control 48(1), 2–17 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lygeros, J.: Lecture notes on hybrid systems (2004). https://robotics.eecs.berkeley.edu/~sastry/ee291e/lygeros.pdf

  17. Mitra, S., Liberzon, D., Lynch, N.: Verifying average dwell time of hybrid systems. ACM Trans. Embed. Comput. Syst. 8(1), 1–37 (2008)

    Article  Google Scholar 

  18. Navarro-López, E.M., Carter, R.: Hybrid automata: an insight into the discrete abstraction of discontinuous systems. Int. J. Syst. Sci. 42(11), 1883–1898 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Navarro-López, E.M., Carter, R.: Deadness and how to disprove liveness in hybrid dynamical systems. Theoret. Comput. Sci. 642, 1–23 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Navarro-López, E.M., Laila, D.S.: Group and total dissipativity and stability of multi-equilibria hybrid automata. IEEE Trans. Autom. Control 58(12), 3196–3202 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ni, Y., Broenink, J.F.: Hybrid systems modelling and simulation in DESTECS: a co-simulation approach. In: Klumpp, M. (ed.) 26th European Simulation and Modelling Conference, pp. 32–36. EUROSIS-ETI, Ghent (2012)

    Google Scholar 

  22. Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska, J.: Systems of systems engineering: basic concepts, model-based techniques, and research directions. ACM Comput. Surv. 48(2), 18:1–18:41 (2015)

    Article  Google Scholar 

  23. Schweizer, B., Li, P., Lu, D.: Explicit and implicit cosimulation methods: stability and convergence analysis for different solver coupling approaches. J. Comput. Nonlinear Dyn. 10(5), 051007 (2015)

    Article  Google Scholar 

  24. Tomiyama, T., D’Amelio, V., Urbanic, J., ElMaraghy, W.: Complexity of multi-disciplinary design. CIRP Ann. - Manuf. Technol. 56(1), 185–188 (2007)

    Article  Google Scholar 

  25. Van der Auweraer, H., Anthonis, J., De Bruyne, S., Leuridan, J.: Virtual engineering at work: the challenges for designing mechatronic products. Eng. Comput. 29(3), 389–408 (2013)

    Article  Google Scholar 

  26. Vangheluwe, H., De Lara, J., Mosterman, P.J.: An introduction to multi-paradigm modelling and simulation. In: AI, Simulation and Planning in High Autonomy Systems, pp. 9–20. SCS (2002)

    Google Scholar 

  27. Zhang, F., Yeddanapudi, M., Mosterman, P.: Zero-crossing location and detection algorithms for hybrid system simulation. In: IFAC World Congress, pp. 7967–7972 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudio Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gomes, C., Karalis, P., Navarro-López, E.M., Vangheluwe, H. (2018). Approximated Stability Analysis of Bi-modal Hybrid Co-simulation Scenarios. In: Cerone, A., Roveri, M. (eds) Software Engineering and Formal Methods. SEFM 2017. Lecture Notes in Computer Science(), vol 10729. Springer, Cham. https://doi.org/10.1007/978-3-319-74781-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74781-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74780-4

  • Online ISBN: 978-3-319-74781-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics