A Refinement Approach to Analyse Critical Cyber-Physical Systems

  • Davide BasileEmail author
  • Felicita Di Giandomenico
  • Stefania Gnesi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10729)


Cyber-Physical Systems (CPS) are characterised by digital components controlling physical equipment, and CPS are typically influenced by the surrounding environment conditions. Due to the stochastic continuous nature of the involved physical phenomena, for quantitative evaluation of non-functional properties (e.g. dependability, performance) stochastic hybrid model-based approaches are mainly used. In case of critical applications, it is also important to verify specific qualitative aspects (e.g. safety). Generally, stochastic hybrid approaches are not suitable to account for the co-existence of both qualitative and quantitative aspects. In this paper we address this issue by proposing a refinement approach for analysing stochastic hybrid systems starting from a verified discrete representation of their logic. Different formalisms are used and formally related. It is then possible to combine the quantitative assessment of stochastic continuous properties with the qualitative verification of logic soundness, thus improving the trustworthiness of the analysis results.



This work has been partially supported by the Tuscany Region project POR FESR 2014–2020 SISTER and H2020 2017–2019 S2R-OC-IP2-01-2017 ASTRail.


  1. 1.
    Abdollahi, M.A., Movaghar, A.: A modeling tool for a new definition of stochastic activity networks. IJST Trans. B 29, 79–92 (2005)Google Scholar
  2. 2.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Balbo, G.: Introduction to generalized stochastic Petri nets. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 83–131. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  4. 4.
    Basile, D., Di Giandomenico, F., Gnesi, S.: A refinement approach to analyse critical cyber-physical systems: extended version. Technical report 2017-TR-005, ISTI-CNR (2017).
  5. 5.
    Basile, D., Chiaradonna, S., Di Giandomenico, F., Gnesi, S.: A stochastic model-based approach to analyse reliable energy-saving rail road switch heating systems. JRTPM 6(2), 163–181 (2016)Google Scholar
  6. 6.
    Basile, D., Degano, P., Ferrari, G.L.: Automata for specifying and orchestrating service contracts. LMCS 12(4), 1–51 (2016)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Basile, D., Degano, P., Ferrari, G.-L., Tuosto, E.: Playing with our CAT and communication-centric applications. In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 62–73. Springer, Cham (2016). CrossRefGoogle Scholar
  8. 8.
    Basile, D., Di Giandomenico, F., Gnesi, S.: Enhancing models correctness through formal verification: a case study from the railway domain. In: Amaretto, Modelsward (2017)Google Scholar
  9. 9.
    Basile, D., Di Giandomenico, F., Gnesi, S.: Statistical model checking of an energy-saving cyber-physical system in the railway domain. In: SAC (2017)Google Scholar
  10. 10.
    Bause, F., Kritzinger, P.S.: Stochastic Petri nets: an introduction to the theory. SIGMETRICS Perform. Eval. Rev. 26(2) (1996)Google Scholar
  11. 11.
    Clark, G., Courtney, T., Daly, D., Deavours, D., Derisavi, S., Doyle, J.M., Sanders, W.H., Webster, P.: The möbius modeling tool. In: PNPM (2001)Google Scholar
  12. 12.
    Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  13. 13.
    David, A., Larsen, K.G., Legay, A., Mikuăionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17, 397–415 (2015)CrossRefGoogle Scholar
  14. 14.
    David, R., Alla, H.: On hybrid Petri nets. Discret. Event Dynamic Syst. 11(1–2), 9–40 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Henzinger, T.A.: The theory of hybrid automata. In: LICS 1996, p. 278. IEEE Computer Society (1996)Google Scholar
  16. 16.
    Henzinger, T.A., Ho, P.-H.: Algorithmic analysis of nonlinear hybrid systems. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 225–238. Springer, Heidelberg (1995). CrossRefGoogle Scholar
  17. 17.
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. Int. J. Softw. Tools Technol. Transf. 1, 134–152 (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Lee, E.A.: Cyber physical systems: design challenges. In: ISORC 2008. IEEE Computer Society (2008)Google Scholar
  19. 19.
    Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  20. 20.
    Sanders, W.H., Meyer, J.F.: Stochastic activity networks: formal definitions and concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000. LNCS, vol. 2090, pp. 315–343. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  21. 21.
    Yovine, S.: KRONOS: a verification tool for real-time systems. JSTTT 1, 123–133 (1997). (kronos user’s manual release 2.2)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Davide Basile
    • 1
    • 2
    Email author
  • Felicita Di Giandomenico
    • 1
  • Stefania Gnesi
    • 1
  1. 1.I.S.T.I “A.Faedo”CNR PisaPisaItaly
  2. 2.Department of Information EngineeringUniversity of FlorenceFlorenceItaly

Personalised recommendations