Skip to main content

Tribology and Lubrication of Solids

  • Chapter
  • First Online:
Liquid-Crystal Nanomaterials

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 267))

Abstract

We meet friction processes quite often in everyday life. As for instance, when we move bodies relative to each other ( kinetic friction) or try to put in motion various bodies at rest (static friction).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The circumstance is noteworthy that the terms “scale effects”, “Adhesive lay”, “micropolar fluid” are often used to designate special properties of subsurface layers.

References

  1. B.N.J. Persson, Sliding Friction: Physical Principles and Applications (Springer, Berlin, 2000), p. 516

    Google Scholar 

  2. N.K. Myshkin, C.K. Kim, M.I. Petrokovets, Introduction to Tribology (CMG, Seoul, 1997), p. 292

    Google Scholar 

  3. N.K. Myshkin, A.I. Sviridenok, D.V. Tkachuk, New Tendencies in Tribology in Relation to the Scientific Heritage of I.V. Kragel’skii, J. Friction Wear 29(4), 251–258 (2008)

    Google Scholar 

  4. K.C. Ludema, Friction, Wear, Lubrication: A Textbook in Tribology (CRC Press Inc., Boca Raton, 1996), p. 257

    Google Scholar 

  5. V.A. Belyi, K.C. Ludema, N.K. Myshkin (ed.), Tribology in the USA and the Former Soviet Union (Allerton Press, NY, 1994), p. 456

    Google Scholar 

  6. I.V. Kragelsky, V.V. Alisin, N.K. Myshkin, M.I. Petrokovets (ed.), Tribology—Lubrication, Friction, and Wear, Handbook (PEP Publishers, London, 2001) p. 948

    Google Scholar 

  7. P.N. Bogdanovich, V.Y. Prushak, Friction and Wear in Machines (Vysheishaya Shkola, Minsk, 1999), p. 374 (in Russian)

    Google Scholar 

  8. N.K. Myshkin, I.G. Goryacheva, Tribology: Trends in the Half-Century Development, J. Friction Wear 37(6), 513–616 (2017)

    Google Scholar 

  9. Y. Kimura, K. Nakano, T. Kato, S. Morishita, Control of friction coefficient by applying electric fields across liquid crystal boundary films. Wear 175, 143–149 (1994)

    Article  Google Scholar 

  10. F.P. Bowden, D. Tabor, The Friction and Lubrication of Solids (Clarendon Press, Oxford, 1964), p. 544

    Google Scholar 

  11. A.P. Semenov, Antifriction materials: experience of application and perspectives. Trenie Smazka Mash. Mekhan. 12, 21–36 (2007) (in Russian)

    Google Scholar 

  12. A.T. Volochko, Antifriction properties of composite aluminum materials under liquid and boundary friction. J. Friction Wear 26(6), 67–72 (2005)

    Google Scholar 

  13. R.N. Zaslavskii, Perspectives of tribopolymer—producing compounds for lubrication material production. Trenie Smazka Mash. Mekhan. 3, 21–33 (2006) (in Russian)

    Google Scholar 

  14. P.A. Rebinder, E.D. Shchukin, Surface phenomena in solids during the course of their deformation and failure. Sov. Phys. Usp. 15, 533–554 (1973) (in Russian)

    Google Scholar 

  15. D.N. Garkunov, Triboengineering (Mashinostroenie, Moscow, 1989), p. 328 (in Russian)

    Google Scholar 

  16. A.S. Akhmatov, Molecular Physics of Boundary Friction (Fizmatgiz, Moscow, 1963), p. 472 (in Russian)

    Google Scholar 

  17. V.A. Belyi, A.I. Sviridenok, Actual directions of development of study in the region of friction and wear. Sov. J. Friction Wear 8(1), 1–16 (1987)

    Google Scholar 

  18. A.P. Semenov, High-temperature solid lubricating substances. J. Friction Wear 28(4), 401–407 (2007)

    Article  Google Scholar 

  19. A.B. Vipper, V.L. Lashkhi, Y.A. Mikutenok, Effect of friction modificators on engine oil properties. Sov. J. Friction Wear 2(5), 55–58 (1981)

    Google Scholar 

  20. T.A. Lobova, E.A. Marchenko, Interaction between friction surfaces and lubricating materials of the 2H–MoS2 type. J. Friction Wear 29(4), 295–301 (2008)

    Article  Google Scholar 

  21. V.L. Lashkhi, A.B. Vipper, V.V. Kulagin, Oil-soluble organic compound of molibdenum—additives to lubricating oils. Khimiya i Tekhnologiya Toplivi Masel 1, 56–58 (1984) (in Russian)

    Google Scholar 

  22. N.M. Reniver, J. Hampshiere, V.C. Fox, Advantages of using self-lubricating, hard, wear-resistant MoS2–based coating. Surf. Coat. Techn. 142–144, 67–77 (2001)

    Article  Google Scholar 

  23. S. Watanabe, J. Noshiro, S. Miyake, Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf. Coat. Technol. 183, 347–351 (2004)

    Article  Google Scholar 

  24. C. Donnet, A. Erdemir, Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180–181, 76–84 (2004)

    Article  Google Scholar 

  25. D.C. Teer, New solid lubricant coatings. Wear 251, 1068–1074 (2001)

    Article  Google Scholar 

  26. T.A. Lobova, E.A. Marchenko, Tribological properties of W(Mo)Se2–Ga/In coatings. Trenie Smazka Mash. Mekhan. 11, 27–31 (2006) (in Russian)

    Google Scholar 

  27. T.A. Lobova, E.A. Marchenko, Modified solid lubricating coatings on tungsten diselenide. J. Friction Wear 28(2), 193–199 (2007)

    Article  Google Scholar 

  28. V.N. Puchkov, A.P. Semenov, V.G. Pavlov, Solid lubricants: experience of application and perspectives. Trenie Smazka Mash. Mekhan. 11, 36–46 (2007) (in Russian)

    Google Scholar 

  29. W.J. Bartz, X. Jinfen, Wear behaviour and failure of bonded solid lubricants. Wear 148(1), 231–246 (1991)

    Google Scholar 

  30. T. Shimizu, A. Iwabuchi, H. Mifune, K. Kishi, M. Arita, The frictional properties of a spray bonded MoS2/Sb2O3 film under the fretting in vacuum. Lubr. Eng. 52(12), 943–948 (1996)

    Google Scholar 

  31. A.A. Zuev, Antifriction and antiwear characteristics of silid-lubricant components from chromium and selenium disulfide. J. Friction Wear 13(4), 131–133 (1992)

    Google Scholar 

  32. N. Stephanolopulos, V. Bellido-Gonzalez, J. Hampshire, D.G. Teer, Tribological study of optimized MoS2 coatings on tool steel specimen pre-coated with TiN. Tribologic et Inginierie des Surfacts (Journees d’etudes, 1995). STF, SIRPE, 57–66 (1996)

    Google Scholar 

  33. O.P. Parenago, G.N. Kuz’mina, D.V. Terekhin, Mechanism of MoS3 triboactive particle formation, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 170–171

    Google Scholar 

  34. V.G. Novitskii, V.P. Gavrilyuk, D.D. Panasenko, N.A. Kal’chuk, V.Ya. Khoruzhii, The effect of lubricating material and thermal treatment on the resulting subsurface layers and wear resistance of 40X steel in sliding friction. J. Friction Wear 23(2), 82–86 (2002)

    Google Scholar 

  35. A.T. Volochko, G.L. Tsarev, Properties of powder composite materials with lead and graphite. Izv. Akad. Nauk BSSR, Ser. Fiz. Tekh. Nauk. (1), 12–16 (1989) (in Russian)

    Google Scholar 

  36. B.N. Arzamasov, T.V. Solov’eva, A Handbook on Construction Materials (Mos. Gos. Tekh. Univ., Moscow, 2005), pp. 147–172 (in Russian)

    Google Scholar 

  37. A.P. Semenov, M.V. Nozhenkov, About mechanism of lubricating action of solid antifriction materials. Sov. J. Friction Wear 5(3), 16–22 (1984)

    Google Scholar 

  38. J. Congrad, Alignment of Nematic Liquid Crystals and Their Mixtures (Gordon and Breach, London, 1982), p. 104

    Google Scholar 

  39. A.A. Markov, Y.V. Lun’kov, T.N. Nazarova, V.K. Gusev, Experimental study of adsorption influence of lubricating oils on wear-resistance of metals. J. Friction Wear 5(3), 123–126 (1984)

    Google Scholar 

  40. D. Bobrov, About friction, Graphite and nanotechnologies. Nauka i zhizn’ 2, 97–100 (2008) (in Russian)

    Google Scholar 

  41. M. Luty, G.A. Kostyukovich, A.A. Skaskevich, V.A. Struk, O.V. Kholodilov, Methods of creating of lubricating materials with nanomodifiers. J. Friction Wear 23(4), 48–59 (2002)

    Google Scholar 

  42. S.P. Zharinov, Fluorine-containing surfactants for wear-resistant coatings and lubricants. J. Friction Wear 20(1), 86–93 (1999)

    Google Scholar 

  43. Yu. Podgurskas, R. Rukuiza, V.A. Gubanov, P.E. Troichanskaya, Influence of fluoroligomeric materials on operation conditions of precision and sealing friction pairs. J. Friction Wear 21(1), 51–57 (2000)

    Google Scholar 

  44. N.K. Myshkin, A.I. Sviridenok, K. Fridrikh, Development of tribology of polymer materials, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 3–4

    Google Scholar 

  45. A.P. Krasnov, O.V. Afonicheva, V.B. Bazhenova, V.A. Mit, Tribochemical processes and nano-dimension in polymer systems, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2009” (IMMS NANB, Gomel, 2009), pp. 4–5

    Google Scholar 

  46. A.P. Krasnov, N.V. Tokareva, V.K. Popov et al., Friction and properties of Ultrahigh-Molecular Weight Polyethylene (UHMWPE), finished by supercritical carbon dioxide. J Friction Wear 24(4), 429–435 (2003)

    Google Scholar 

  47. Y.M. Pleskachevskii, V.E. Agabekov, Achievements of chemistry as fundamental base of material science, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 5–7

    Google Scholar 

  48. V.P. Sel’kin, A.V. Makarenko, A.Z. Skorokhod et al., The effect of radiation-induced cross-linking on the wear rate of polyvinylidene fluoride during friction in a liquid. J. Friction Wear 29(1), 45–49 (2008)

    Google Scholar 

  49. I.V. Pogotskaya, S.A. Chizhik, T.A. Kuznetsova, Statistical power spectroscopy of nanostructured Langmuir–Blodgett films, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 181–182

    Google Scholar 

  50. S.S. Pesetskii, S.P. Bogdanovich, N.K. Myshkin, Tribological behavior of nanocomposites produced by the dispersion of nanofillers in polymer melts. J. Friction Wear 28(5), 457–475 (2007)

    Article  Google Scholar 

  51. M.G. Ivanov, V.V. Kharlamov, V.M. Buznik et al., Tribological properties of the grease containing polytetrafluorethylene and ultrafine diamonds. J. Friction Wear 25(1), 89–92 (2004)

    Google Scholar 

  52. Forum—The Newest Technologies of Struggle with Friction and Wear (Vladforum, Vladivostok). http://www.forumshop.ru

  53. A.A. Okhlopkova, Properties of polytetrafluorethylene modified by ultradispersed diamonds. Mat. Tekhnol. Instrumenty 4(3), 60–63 (1999) (in Russian)

    Google Scholar 

  54. A.M. Malevich, E.V. Ovchinnikov, YuS Boiko, V.A. Struk, Tribological properties of PTFE modified by ultra-dispersed clusters of synthetic carbon. J. Friction Wear 19(3), 71–74 (1998)

    Google Scholar 

  55. A.N. Popov, V.P. Kazachenko, A.V. Rogachev, Structure and triboengineering properties of polytetrafluorethylene coatings, dispersly-strenghtening by nanoparticles formed from active gaseous phase, in School on Plasmochemistry for Young Scientists of Russia and Union of Independent Countries (RAN–IGKhTU, Moscow, 2001), pp. 1–3

    Google Scholar 

  56. W.X. Chen, F. Li, G. Han, J.B. Xia, L.Y. Wang, J.P. Tu, Z.D. Xu, Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 15, 275–278 (2003)

    Article  Google Scholar 

  57. I.I. Vasiliyev, A study of triboengineering characteristics of fine fullerene films. J. Friction Wear 25(4), 61–64 (2004)

    Google Scholar 

  58. V.I. Komarova, A.I. Komarov, Effect carbon nanotubes introduced in lubricant on triboengineering properties and structure of MDO coatings, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 117–118

    Google Scholar 

  59. B.V. Ginzburg, D.G. Tochil’nikov, Effect of fullerene-containing additives on the bearing capacity of fluoroplastics under friction. Tech. Phys. 46(2), 249–253 (2001)

    Google Scholar 

  60. P.A. Vityaz’, V.I. Zhornik, V.A. Kukareko, A.I. Kamko, Formation of wear-resistant surface structures and mechanism of their damage at friction with lubricant modified by ultradispersed diamond–graphite additives. Part I. Tribological behavior. J. Friction Wear 27(1), 55–61 (2006)

    Google Scholar 

  61. P.A. Vityaz’, V.I. Zhornik, V.A. Kukareko, A.I. Kamko, Formation of wear-resistant surface structures and mechanism of their damage at friction with lubricant modified by ultradispersed diamond–graphite additives. Part II. Model of destruction. J. Friction Wear 27(2), 67–70 (2006)

    Google Scholar 

  62. N.F. Dmitrichenko, R.G. Mnatsakanov, O.A. Mikosyanchik, A.I. Kushch, Wear kinetics of contact surfaces with use of C–60 fullerene additive to motor oil. J. Friction Wear 30(6), 399–403 (2009)

    Article  Google Scholar 

  63. H. Hirai, K. Kondo, N. Yoshizawa, M. Shiraishi, C–60 fullerene. Appl. Phys. Lett. 64, 1797–1799 (1994)

    Article  Google Scholar 

  64. O.G. Epanchitsev, A.S. Zubchenko, Y.D. Tret’kav, Shock wave synthesis of diamonds of micron size from fullerenes. Doklady Ross. Akad. Nauk 340(2), 201–203 (1995)

    Google Scholar 

  65. O.F. Kireenko, B.M. Ginzburg, V.P. Bulatov, The effect of fullerene on the tribological characteristics of plastic greases. J. Friction Wear 23(3), 64–68 (2002)

    Google Scholar 

  66. B.M. Ginzburg, O.F. Kireenko, D.G. Tochil’nikov, V.P. Bulatov, Formation of antiwear structure upon sliding friction of steel along copper in the presence of fullerene or fullerene carbon-black. Pis’ma Zh. Tekh. Fiz. 21(23), 38–42 (1995)

    Google Scholar 

  67. A.A. Shepelevekii, L.A. Shibaev, B.M. Ginzburg, V.P. Bulatov, Effect of C–60 fullerene on lubricating process in steel–copper trubopair clearance. Zh. Prikl. Khim. 72(7), 1198–1203 (1999)

    Google Scholar 

  68. V.G. Savkin, T.G. Chmykhova, I.O. Delikatnaya, E.N. Volnyanko, The influence of external effects on the structurization of lubricating materials. J. Friction Wear 28(6), 557–560 (2007)

    Article  Google Scholar 

  69. V.G. Savkin, V.A. Smurugov, T.G. Chmykhova, I.O. Delikatnaya, Wetting and spreading of oils containing surfactants and superdispersed fillers. J. Friction Wear 25(4), 35–41 (2004)

    Google Scholar 

  70. E.F. Kudina, D.N. Kushnerov, S.I. Tyurina, T.G. Chmykhova, Effect of dispersed organic silica on the tribological behavior of greases. J. Friction Wear 24(5), 77–80 (2003)

    Google Scholar 

  71. E.N. Volnyanko, S.F. Ermakov, V.A. Smurugov, Influence of a lubricant modified with fine-dispersed β-sialon on a steel surface structure under friction loading. J. Surf. Invest. X-ray, Synchrotron Neutron Tech. 2(5), 738–743 (2008)

    Article  Google Scholar 

  72. V.I. Kolesnikov, N.A. Myasnikova, E.N. Volnyanko, S.F. Ermakov, A.P. Sychev, A.A. Sychev, Lubricants with ceramic nanoadditives and wear-resistant surface structures of heavy-duty junctional joints. Russ. Eng. Res. 31(5), 454–457 (2011)

    Article  Google Scholar 

  73. K.N. Dolgopolov, D.N. Lyubimov, A.G. Ponomarenko et al., The structure of lubricating layers appearing during friction in the presence of additives of mineral friction modifiers. J. Friction Wear 30(5), 377–380 (2009)

    Article  Google Scholar 

  74. D.N. Lyubimov, K.N. Dolgopolov, A.T. Kozakov, A.V. Nikol’skii, Improvement of exploitation properties of lubricating materials by use of clay mineral additives, in Proceedings of International Scientific and Technical Conference “Polycomtrib–2011” (IMMS NANB, Gomel, 2011), pp. 144–145

    Google Scholar 

  75. R.N. Zaslavskii, V.D. Asrieva, Y.S. Zaslavskii, About mechanism of antiwear action and results of tests of plastic lubricant with tribopolymerformating stiffener. Sov. J. Friction Wear 2(1), 96–101 (1981)

    Google Scholar 

  76. V.G. Lapteva, E.N. Dokuchaeva, V.F. Kaplina, Wear resistance of technological equipment friction pairs at the use of tribopolymerformating lubricating materials. Sov. J. Friction Wear 6(1), 77–83 (1985)

    Google Scholar 

  77. L.S. Pinchuk, V.A. Gol’dade, Electret Materials in Engineering (Infotribo, Gomel, 1998), p. 288

    Google Scholar 

  78. A.A. Silin, Friction in cosmic vacuum. Trenie Iznos 1(1), 168–178 (1980)

    Google Scholar 

  79. A.A. Silin, About behavior and stability of artificially activated tribosystems. Trenie Iznos Smaz. Mater. 2, 296–299 (1985)

    Google Scholar 

  80. D.N. Garkunov (ed.), Selective Transfer in Hardly Loaded Friction Joints (Mashinostroenie, Moscow, 1982), p. 207

    Google Scholar 

  81. V.N. Litvinov, N.M. Mikhin, N.K. Myshkin, Physico-Chemical Mechanics of Selective Transfer at Friction (Nauka, Moscow, 1979), p. 187

    Google Scholar 

  82. M.L. Rybakova, L.I. Kuksenova, Structure and Wear-Resistance of Metal (Mashinostroenie, Moscow, 1982), p. 212

    Google Scholar 

  83. G.G. Chigarenko, A.G. Ponomarenko, A.S. Burlov, A.G. Chigarenko, Efficient additives on the basis of azo-(azomethine) coordination compounds of transition metals. J. Friction Wear 28(4), 377–382 (2007)

    Article  Google Scholar 

  84. G.G. Chigarenko, A.G. Ponomarenko, A.S. Burlov et al., Effect of chemical structure of coordination compounds of transient metals on lubricating characteristics of oils. J. Friction Wear 27(2), 92–97 (2006)

    Google Scholar 

  85. S.F. Ermakov, V.G. Rodnenkov, E.D. Beloenko, B.I. Kupchinov, Liquid Crystals in Engineering and Medicine (Minsk, Asar, 2002), p. 412

    Google Scholar 

  86. V.I. Kolesnikov, S.F. Ermakov, A.P. Sychev, Triboinduced adsorption of liquid-crystal nanomaterials under friction interaction of solids. Dokl. Phys. 54(6), 269–272 (2009)

    Article  Google Scholar 

  87. V.I. Kolesnikov, M.A. Savenkova, S.B. Bulgarevich et al., Investigation of the triboengineering characteristics of plastic railway greases with inorganic polymeric additives. J. Friction Wear 29(3), 200–204 (2008)

    Article  Google Scholar 

  88. V.I. Kolesnikov, S.F. Ermakov, F. Daniel et al., Synthesis and study of triboengineering characteristics of a new nanosize ceramic nickel phosphoromolybdate additive to greases. J. Friction Wear 31(6), 426–432 (2010)

    Google Scholar 

  89. V.I. Kolesnikov, A.T. Kozakov, Y.F. Migal, Study of friction and wear in the wheel-rail system by X-ray electron and auger-electron spectroscopy and quantum chemistry. J. Friction Wear 31(1), 11–22 (2010)

    Google Scholar 

  90. P.A. Rebinder, Physico-chemical Mechanics: Selected Papers (Nauka, Moscow, 1979), p. 381

    Google Scholar 

  91. I.A. Buyanovskii, Application of the kinetic approach to description of the process of boundary lubrication. J. Friction Wear 24(3), 72–80 (2003)

    Google Scholar 

  92. A.V. Chichinadze, I.A. Buyanovskii, B.E. Gurskii, The diagram of transitions and the screening effect of lubricating layer. J. Friction Wear 23(3), 90–97 (2002)

    Google Scholar 

  93. D. Moore, Principles and Applications of Tribology (Pergamon Press, Oxford, 1975), p. 488

    Google Scholar 

  94. S.F. Ermakov, V.P. Parkalov, V.A. Shardin, R.A. Shuldykov, Effect of liquid-crystal additives on tribological performance of dynamically contacting surfaces and mechanism of their friction. J. Friction Wear 25(2), 87–91 (2004)

    Google Scholar 

  95. G. Biresaw (ed.), Tribology and the Liquid-Crystalline State (American Chemical Society, Symposium Series, 1990) (441), p. 130

    Google Scholar 

  96. A.S. Sonin, Introduction in Liquid Crystal Physics (Nauka, Moscow, 1983), p. 104

    Google Scholar 

  97. I.A. Buyanovskii, Y.N. Drozdov, Z.N. Ignat’eva et al., Effect of orienting coatings on the apparent activation energy of boundary film destruction. J. Friction Wear 28(1), 12–18 (2007)

    Google Scholar 

  98. I.A. Buyanovskii, V.A. Levchenko, Z.N. Ignat’eva, V.N. Matveenko, Nanostructured carbon coating-orientant and its interaction with boundary lubricating layers. J. Friction Wear 30(6), 415–419 (2009)

    Google Scholar 

  99. I.A. Buyanovskii, Z.N. Ignat’eva, V.A. Levchenko, V.N. Matveenko, Orientation ordering of boundary layers and lubricity of oils. J. Friction Wear 29(4), 282–287 (2008)

    Google Scholar 

  100. S. Morishita, K. Nakano, Y. Kimura, Electroviscous effect of nematic liquid crystals. Tribol. Int. 26, 399–403 (1993)

    Article  Google Scholar 

  101. Y. Kimura, K. Nakano, S. Morishita, Liquid crystal as potential lubricant—possibility of active control of friction coefficient, in Proceedings of the 6th Nordic Symposium on Tribology, vol. 2 (1994), pp. 313–322

    Google Scholar 

  102. V.E. Fertman, Magnetic Fluids: A Textbook (Minsk, Vysheishaya Shkola, 1988), p. 184

    Google Scholar 

  103. A. Mishchak, tribological properties of ferrofluid. J. Friction Wear 27(3), 81–86 (2006)

    Google Scholar 

  104. A.N. Bolotov, S.N. Grigor’ev, I.V. Gorlov, Magnetopowder method of abrasive medium confinement. Sov. J. Friction Wear 10(6), 91–93 (1989)

    Google Scholar 

  105. A.N. Bolotov, K.K. Sozontov, D.V. Orlov, Role of structural components of machine oil in boundary lubrication conditions. Sov. J. Friction Wear 12(5), 44–49 (1991)

    Google Scholar 

  106. A.N. Bolotov, N.V. Lochagin, YuO Mikhalev, Magnetic field role at friction of surfaces, Lubricated by machine oil. Sov. J. Friction Wear 9(5), 80–86 (1988)

    Google Scholar 

  107. A.N. Bolotov, V.V. Novikov, O.O. Novikova, Friction of a structured magnetic fluid sliding over a solid surface. J. Friction Wear 27(4), 46–51 (2006)

    Google Scholar 

  108. N.B. Demkin, A.N. Bolotov, Self-unloading magnetic bearings. Sov. J. Friction Wear 6(1), 1–6 (1985)

    Google Scholar 

  109. E.D. Beloenko, YuM Chernyakova, L.S. Pinchuk, Tribological foundation of hondroprotection method with the help of blood auto-serosity and hyaluronates. Dokl. Nat. Akad. Nauk Belarusi 51(2), 72–75 (2007)

    Google Scholar 

  110. L.S. Pinchuk, Y.M. Chernyakova, V.A. Gol’dade, The tribology of joints and problems of modern orthopedics. J. Friction Wear 29(3), 224–233 (2008)

    Google Scholar 

  111. YuM Chernyakova, ZhV Kadolich, L.S. Pinchuk et al., Electromagnetic field effect on tribological characteristics of synovial fluid. Trenie Iznos 24(6), 50–55 (2003)

    Google Scholar 

  112. L.S. Pinchuk, YuM Chernyakova, S.F. Ermakov, Tribophysics of Synovial Fluid (Minsk, Belaruskaya Navuka, 2010), p. 382

    Google Scholar 

  113. L.S. Pinchuk, E.A. Tsvetkova, Z.V. Kadolich, Electromagnetic field effect on friction in endoprostheses of joints. J. Friction Wear 22(5), 69–73 (2001)

    Google Scholar 

  114. Y. Yamamoto, J. Yagi, H. Higaki, Effect of electric field externally applied on friction and wear characteristics. Trans. Jpn. Soc. Mech. Eng. 57C, 2734–2739 (1991)

    Article  Google Scholar 

  115. A. Takeuchi, M. Sato, H. Aoki, Effect of electric current on advance of running-in. Japanece J. Tribol. 35, 1385–1395 (1990)

    Google Scholar 

  116. S.C. Tung, S.S. Wang, In-situ electro-charging for friction reduction and wear resistant film formation. Tribol. Trans. 34, 479–488 (1991)

    Article  Google Scholar 

  117. E.V. Korobko, R.G. Gorodkin, V.V. Mtlnichenko, Boundary effects at ERF spreading in electric field. Int. J. Modern Phys. B 10(23), 3357–3365 (1996)

    Article  Google Scholar 

  118. E.V. Korobko, Electrostructured (Electroreological) Fluids: Hydrodynamic Peculiarities and Possibilities of Use (Minsk, ITMO, 1996), p. 189

    Google Scholar 

  119. V.L. Basinyuk, E.V. Korobko, E.I. Mardosevich et al., Tribotechnical parameter control of friction interfaces. J. Friction Wear 24(6), 96–102 (2003)

    Google Scholar 

  120. V.I. Komarova, V.L. Basinyuk, A.I. Komarov, N.E. Senokosov, New composite friction pairs of friction. Nauka Proizvodstvu 19(6), 52–53 (1999)

    Google Scholar 

  121. V.A. Belyi, C. Ludema, N.K. Myshkin (ed.), Tribology. Studies and Applications: The Experience in the USA and CIS States (Moscow, 1993), p. 432 (in Russian)

    Google Scholar 

  122. S. Ermakov, A. Beletskii, O. Eismont, V. Nikolaev, Liquid Crystals in Biotribology. Synovial Joint Treatment (Springer, Heidelberg, 2016), p. 211

    Google Scholar 

  123. B.V. Deryagin, G.K. Strakhovskii, D.A. Malysheva, Measurement of viscosity the boundary (surface) layers of liquids by the method of deflation. J. Exp. Theor. Phys. 16(2), 171–182 (1946) (in Russian)

    Google Scholar 

  124. V.V. Karasev, B.V. Deryagin, Measurement of viscosity the boundary (surface) layers of liquids by the method of deflation. Colloid J. 15, 1235–1241 (1953) (in Russian)

    Google Scholar 

  125. B.A. Altoiz, Measurement of viscosity the boundary (Surface) layers of liquids by the method of deflation, in Physics of Air-Borne Dispersed Systems, 21 edn. (Vysheishaya Shkola, Kiev, 1981), pp. 35–40 (in Russian)

    Google Scholar 

  126. L.M. Blinov, V.G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials. Series: Partially Ordered Systems (Springer, Berlin, 1996), p. 296

    Google Scholar 

  127. B.A. Altoiz, Study of the structural characteristics of the boundary (LCD) nitrobenzene layer on the surface of the quartz, in Problems of Physics of Form Appearance and Phase Transformations (Kalinin, 1981), pp. 80–86 (in Russian)

    Google Scholar 

  128. Y.M. Popovskii, B.A. Altoiz, Study of structural regularity boundary of multimolecular layers of nitrobenzene formed on liofilizirovanny solid support. Colloid J. 43(6), 1177–1179 (1981) (in Russian)

    Google Scholar 

  129. B.V. Deryagin, B.A. Altoiz, I.I. Nikitenko, Study of the structural characteristics epitropic LCD phases of some organic liquids. Trans. USSR Acad. Sci. 300(2), 377–380 (1988) (in Russian)

    Google Scholar 

  130. I.A. Klejman, I.E. Tomashevskii, Features structural regularity near the boundary between the liquid crystal substrate. Crystallography 29(6), 1214–1215 (1984) (in Russian)

    Google Scholar 

  131. B.A. Altoiz, AYu. Popovskii, The study wall of ordering in liquid crystals freeze solid substrate. Colloid J. 19, 419–423 (1987) (in Russian)

    Google Scholar 

  132. B.V. Deryagiin, N.V. Churaev, V.M. Mullur, Surface Forces (Nauka, Moscow,1987), p. 202 (in Russian)

    Google Scholar 

  133. B.V. Deryagin, N.V. Churaev, Trans. USSR Acad. Sci. 207(3), 572–575 (1972) (in Russian)

    Google Scholar 

  134. B.V. Deryagin, N.V. Churaev, Croat Chem. Acta. 50(4), 187–195 (1977) (in Russian)

    Google Scholar 

  135. J.N. Israelachvili, E.E. Adams, Measurement of forces between two mica surfaces in aqueous electrolyte solution in the range 0–100 nm. J. Chem. Soc. Faraday Trans. 74(4), 975–1001 (1978)

    Article  Google Scholar 

  136. S.F. Ermakov, Tribology of Liquid-Crystalline Nanomaterials and systems (Belarusian Nauka, Minsk, 2012), p. 380 (in Russian)

    Google Scholar 

  137. E.L. Aero, N.M. Bessonov, Micromechanics of structural liquid layers between solids in contact, in Itogi Nauki I Tekhniki. Ser.: Mechanics of Fluids and Gases, vol. 23. (VINITI, Moscow, 1989), pp. 237–315 (in Russian)

    Google Scholar 

  138. N.K. Christenson, D.W.R. Gruen, R.G. Horn, J.N. Israelachvili, Structuring in liquid alcanes between solid surfaces: force measurements and mean-field theory. J. Chem. Phys. 87(3), 1834–1841 (1987)

    Article  Google Scholar 

  139. D.I.C. Chan, R.G. Horn, The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 83(10), 5311–5324 (1985)

    Google Scholar 

  140. J.L. Parker, H.K. Christenson, Measurements of the forces between a metal surface and mica across liquids. J. Chem. Phys. 88(12), 8013–8014 (1988)

    Article  Google Scholar 

  141. H.K. Christenson, DLVO (Derjaguin–Landau–Verwey–Overbeek) theory and salvation forces between mica surfaces in polar and hydrogen-bonding liquids. J. Chem. Soc. Faraday Trans. 80(7), 1933–1946 (1984)

    Article  Google Scholar 

  142. H.K. Christenson, R.G. Horn, Direct measurement of the force between solid surfaces in a polar liquid. Chem. Phys. Lett. 98(1), 45–48 (1983)

    Article  Google Scholar 

  143. R.G. Horn, J.N. Israelachvili, E. Perez, Forces due to structure in a thin liquid crystal films. J. Phys. 42(1), 39–52 (1981)

    Article  Google Scholar 

  144. K. Bartolino, G. Durand, Mechanical behavior of the smectic phases near the phase transitions. Solid State Commun. 54(4), 301–304 (1985)

    Article  Google Scholar 

  145. P. Oswald, Fluage en Compression d’un Smectique. J. Acad. Sci. Ter. 2. 296(18), 1385–1388 (1983)

    Google Scholar 

  146. J.M. Pochan, P.T. Erhardt, Shear-induced texture changes in cholesteric liquid-crystal mixtures. Phys. Rev. Lett. 27(12), 790–791 (1971)

    Article  Google Scholar 

  147. J.M. Pochan, D.G. Marsf, Mechanism of shear-induced structural changes. J. Chem. Phys. 57(3), 1193–1200 (1972)

    Article  Google Scholar 

  148. P.P. Erhardt, J.M. Pochan, W.C. Richards, Normal stress effects in cholesteric mesophases. J. Chem. Phys. 57(9), 3596–3601 (1972)

    Article  Google Scholar 

  149. T. Koraka, Note on the normal stress effect in the solution of rodlike macromolecules. J. Chem. Phys. 30(6), 1566–1567 (1959)

    Article  Google Scholar 

  150. J.G. Kirkwood, Rec. Trav. Chim. 68, 649 (1949)

    Article  Google Scholar 

  151. A.C. Eringen, Theory of micropolar fluid. J. Math. and Mech. 36(1), 1–16 (1966)

    Google Scholar 

  152. P. Oswald, M. Kleman, Theorie de Lubrication Appliquee aux Smectiques. C. R. Acad. Sci. Ser. 2. 294(17), 1057–1060 (1982)

    Google Scholar 

  153. Orsay Group in Liquid Crystals, On some flow properties of smectic A. J. Physigue Cl, 305–313 (1975)

    Google Scholar 

  154. P.M. Leslie, Theory of Flow Phenomena in Liquid Crystals. Advances in Liquid Crystals, ed. by G.H. Brown (Academic Press, NY, 1979), p. 23

    Google Scholar 

  155. E.L. Aero, N.M. Bessonov, Hydrodynamic mode of operation of the elastic bearing is slipping boundary conditions in the viscosity. J. Friction Wear 13(1), 116–124 (1992)

    Google Scholar 

  156. J.A. Tichy, Lubrication theory for nematic liquid crystals. Tribol. Trans. 33(3), 363–370 (1990)

    Google Scholar 

  157. J.L. Ericksen, Continuum theory of nematic liquid crystals. Res. Mechanica. 21, 381–392 (1987)

    Google Scholar 

  158. A.S. Vasilevskaja, E.A. Dukhovoj, A.A. Silin, Effect of nematic ordering on sliding friction. Correspondence J. Tech. Phys. 12(12), 750–752 (1986) (in Russian)

    Google Scholar 

  159. B.V. Deryagin, The theory of boundary friction, in Progress of the Theory of Friction and Wear (Moscow, 1957), pp. 15–26 (in Russian)

    Google Scholar 

  160. E. Cosserat, F. Cosserat, Theorie des Corp Deformables (Hermann, Paris, 1909), p. 226

    Google Scholar 

  161. S.J. Alien, K.A. Kline, The effect of concentration in fluid suspension. Trans. Soc. Rheol. 12(3), 457–468 (1968)

    Article  Google Scholar 

  162. S.J. Alien, K.A. Kline, Lubrication theory for micropolar fluid. Trans. ASME. E 38(4), 646–656 (1971)

    Article  Google Scholar 

  163. J. Prakash, P. Sinha, Squeeze film theory for micropolar fluids. Trans. ASME. F 98(1), 139–144 (1976)

    Article  Google Scholar 

  164. J. Prakash, P. Sinha, Lubrication theory for micropolar fluids and its applications to a journal bearing. Int. J. Eng. Sci. 13, 217–232 (1975)

    Google Scholar 

  165. P. Sinha, Ch. Singh, Lubrication of rough surfaces. Int. J. Mech. Sci. 24(10), 619–633 (1982)

    Article  Google Scholar 

  166. R.A. Brand, Joint lubrication. Ch. 13. in The Scientific Basis of Orthopaedics, 2nd edn. (1987), pp. 373–386

    Google Scholar 

  167. S.F. Ermakov, Biomechanics of synovia in living joints. 1. Modern concepts of living joints friction, wear and lubrication. J. Friction Wear 14(6), 97–109 (1993)

    Google Scholar 

  168. H. Muir, P. Bullough, A. Maroudas, The distribution of collagen in human articular cartilage with some of its physiological implications. J. Bone Joint Surg. 52B, 554–563 (1970)

    Google Scholar 

  169. H. Lipshitz, R. Etheredge, M.J. Climcher, In vitro studies of the wear of articular cartilage. The wear characteristics of chemically modified articular cartilage when worn against a highly polished characterized stainless steel surface. J. Biomech. 13, 423–436 (1980)

    Article  Google Scholar 

  170. C. Weiss, L. Rosenberg, A.J. Helfet, An ultrastructural study of normal young adult human articular cartilage. J. Bone Joint Surg. 50A, 663 (1968)

    Article  Google Scholar 

  171. A. Maroudas, P. Bullough, S.A.V. Swanson, M.A.R. Freeman, The permeability of articular cartilage. J. Bone Joint Surg. 50B, 166 (1968)

    Google Scholar 

  172. A. Maroudas, H. Muir, The distribution of collagen and glycosaminoglycans in human articular cartilage and the influence on hydraulic permeability. Chem. Mol. Biol. Intercell. Matrix 3 (1970)

    Google Scholar 

  173. F.F. Jaffe, H.J. Mankin, C. Weiss, A. Zarins, Water binding in the articular cartilage of rabbits. J. Bone Joint Surg. 56A, 1031 (1974)

    Article  Google Scholar 

  174. F.K. Linn, Lubrication of joints in animals. Problems of friction ad lubrication. ASME Trans. 2, 141−153 (1969)

    Google Scholar 

  175. C.W. McCutchen, Boundary lubrication by synovial fluid: demonstration and possible osmotic explanation. Federat. Proceed. Lubric. Biomech. 25, 1061–1068 (1966)

    Google Scholar 

  176. P.S. Walker, J. Sikorski, D. Dowson et al., Behavior of synovial fluid on surfaces of articular cartilage: a scanning electron microscope study. Ann. Rheum. Dis. 28(1), 1–14 (1969)

    Article  Google Scholar 

  177. P.S. Walker, A. Unsworth, D. Dowson et al., Mode of aggregation of hyaluronic acid protein complex on the surface of articular cartilage. Ann. Rheum. Dis. 29, 591–602 (1970)

    Article  Google Scholar 

  178. P.S. Walker, B.L. Gold, Comparison of the bearing performance of normal and artificial human joints. Trans ASME. F 95(3), 333–341 (1973)

    Google Scholar 

  179. D. Dowson, A. Unsworth, V. Wright, Analysis of boosted lubrication in human joints. J. Mech. Eng. Sci. 12, 364–369 (1970)

    Article  Google Scholar 

  180. J.M. Mansour, V.C. Mow, On the natural lubrication of synovial joints: normal and degenerate. Trans. ASME F 99(2), 163–173 (1977)

    Article  Google Scholar 

  181. P.A. Torzilli, Mechanical response of articular cartilage to an oscillating load. Mech. Res. Commun. 11(1), 75–82 (1984)

    Article  Google Scholar 

  182. V. Wright, D. Dowson, J. Kerr, The structure of joints. IV. Articular cartilage. Int. Rev. Connect. Tissue Res. 6, 105–124 (1973)

    Google Scholar 

  183. V.C. Mow, J.M. Mansour, The nonlinear interaction between cartilage deformation and interstitial fluid flow. J. Biomech. 10(1), 31–39 (1977)

    Article  Google Scholar 

  184. A. Unsworth, D. Dowson, V. Wright, D. Koshal, The frictional behavior of human synovial joints. 2. Artificial joints. Trans. ASME F97(3), 377–382 (1975)

    Google Scholar 

  185. I.C. Clarke, R. Contini, R.M. Kenedi, Friction and wear studies of articular cartilage: a scanning electron microscope study. Trans. ASME F 97(3), 358–368 (1975)

    Google Scholar 

  186. A. Unsworth, D. Dowson, V. Wright, The frictional behavior of human synovial joints. Part 1. Natural joints. Trans. ASME F97(3), 369–376 (1975)

    Google Scholar 

  187. T.A. Prokhorova. O.V. Oganesjan, V.K. Mikhajlov. Problem of the mechanism of low friction of articular cartilages, friction, wear and lubricants, in Proceedings of the International Science Conference (Moscow, 1985), pp. 15−16 (in Russian)

    Google Scholar 

  188. V.K. Mow, Role of lubrication in biomechanical joints. J. Lubr. Technol. 91F(2), 320–328 (1969)

    Article  Google Scholar 

  189. V.N. Pavlova, Synovial Medium in Joints (Meditsina, Moscow, 1980), p. 296 (in Russian)

    Google Scholar 

  190. P.C. Seller, D. Dowson, V. Wright, The rheology of synovial fluid. Rheol. Acta. 10, 2–7 (1971)

    Article  Google Scholar 

  191. M.N. Pavlova, B.N. Kumanin, The ultrastructure of rubbing surfaces in a joint. Anat. Histol. Embryol. Arch. 8, 38–42 (1983) (in Russian)

    Google Scholar 

  192. H. Chikama, The role of the protein and the hyaluronic acid in the synovial fluid in animal joint lubrication. J. Jpn. Orthop. Ass. 59(5), 559–572 (1985)

    Google Scholar 

  193. W.H.J. Davis, S.L. Lee, L. Sokoloff, A proposed model of boundary lubrication by synovial fluid: structuring of boundary water. Trans. ASME J. Biomech. Eng. 101(3), 185–192 (1979)

    Article  Google Scholar 

  194. D.A. Swann, Macromolecules of Synovial Fluid. The Joints and Synovial Fluid, ed. by L. Sokoloff (New York, 1978), p. 374

    Google Scholar 

  195. D.A. Swann, E.L. Radin, M. Nazimiec et al., Role of hyaluronic acid in joint lubrication. Ann. Rheum. Dis. 33, 318–328 (1974)

    Google Scholar 

  196. D.A. Swann, R.B. Hendren R.B., E.L. Radin, The lubricating activity of synovial fluid glycoproteins. Arthritis Rheum. 24, 22 (1981)

    Google Scholar 

  197. D. Gvozdanovic, V. Wright, D. Dowson, Formation of lubricating monolayers at the cartilage surface. Ann. Rheum. Dis. 34, 100–106 (1975)

    Article  Google Scholar 

  198. B.I. Kupchinov, V.G. Rodnenkov, S.F. Ermakov et al. The problem of the mechanism of functioning of the joint as a rubbing body. Trans. Belarusian Acad. Sci. 29(5), 463−465 (1985) (in Russian)

    Google Scholar 

  199. B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, S.N. Bobrysheva, E.D. Beloenko, I.R. Voronovich, Y.M. Pleskachevskii, V.A. Belyi, Property of synovial medium to ensure the high antifriction of cartilages in joints of humans and animals, in Nauchnye otkrytiya (Scientific Discoveries) (Moscow, 1999), pp. 14−16

    Google Scholar 

  200. Pat. 5,238,929 US, A 61 К 31/56. Correction of tribology of arthritis-affected joints and medicine for its implementation/B.I. Koupchinov, S.F. Ermakov, E.D. Belojenko, V.G. Rodnenkov, V.N. Kestelman, N 779,490. Filed 22.10.91. Published 24.08.93

    Google Scholar 

  201. S.F. Ermakov, E.D. Beloenko, O.L. Eismont, Role of liquid crystals in tribological behavior of joint cartilages. J. Friction Wear 25(5), 31–35 (2004)

    Google Scholar 

  202. B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, Role of liquid crystals in the lubrication of living joints. Smart Mater. Struct. 2, 7–12 (1993)

    Article  Google Scholar 

  203. S.F. Ermakov, B.I. Kupchinov, E.D. Beloenko, Liquid crystalline components of synovia and their role in the joint tribology, in Proceedings of Symposium “Inzynieria Ortopedyczna i Protetyczna” (Belostok, 1997), pp. 125−131

    Google Scholar 

  204. B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, E.D. Beloenko, O.L. Eismont, Some results of studies in liquid-crystalline state of synovial lubricant in joints. J. Friction Wear 23(3), 69–75 (2002)

    Google Scholar 

  205. B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, Study of cartilage tribological properties. Sov. J. Friction Wear 9(4), 73–77 (1988)

    Google Scholar 

  206. S. Ermakov, B. Kupchinov, E. Beloyenko, A. Suslov, O. Eismont, The effect of liquid crystals on tribomechanical properties of cartilages, in Inzynieria Ortopedyczna i Protetyczna – IOP 99: Proceedings of the Sympozjum (Bialystok, 1999), pp. 93−99

    Google Scholar 

  207. B.I. Kupchinov, S.F. Ermakov, V.G. Rodnenkov, E.D. Beloenko, Relation of the structural-mechanical and antifriction properties of the synovial medium of the joints. Mech. Compos. Mater. 24(2), 188–194 (1988)

    Article  Google Scholar 

  208. E.D. Beloenko, S.F. Ermakov, B.I. Kupchinov, V.G. Rodnenkov, O.L. Eismont, Liquid crystal state of joint synovial lubricating medium. Experimental substantiation. Acta Bioeng. Biomech. 3(1), 24–32 (2001)

    Google Scholar 

  209. E.D. Beloenko, O.L. Eismont, L.A. Pashkevich, I.A. Chved, S.F. Ermakov, Effectiveness of medication containing bioactive cholesteric-nematic liquid crystals substance in treatment of experimental osteoarthritis. Proc. Nat. Acad. Sci. Belarus Med. Ser. 1, 5–8 (2005)

    Google Scholar 

  210. P. Walker, J. Sikorski, D. Dowson, Lubrication mechanism in human joints, bio-engineering group on human joints (University of Leeds, 1966–67), pp. 49−56

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey F. Ermakov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ermakov, S.F., Myshkin, N.K. (2018). Tribology and Lubrication of Solids. In: Liquid-Crystal Nanomaterials. Springer Series in Materials Science, vol 267. Springer, Cham. https://doi.org/10.1007/978-3-319-74769-9_2

Download citation

Publish with us

Policies and ethics