Advertisement

Anesthesiology pp 777-793 | Cite as

Anesthesia for Robot Assisted Gynecological Procedures

  • Eilish M. Galvin
  • Henri J. D. de Graaff
Chapter

Abstract

The use of robot-assisted techniques in the performance of surgery has been one of the most important developments in surgery in recent decades. The US FDA approved the robot-assisted surgical system for gynecological conditions in 2005, and currently gynecological together with urological are the most common surgical procedures performed with the Da Vinci® robot. In essence the robot system allows a surgeon to operate from a location remote to the patient, which allows improved accuracy, precision and a more comfortable operating position for the surgeon. However, robot-assisted surgery presents new challenges for anesthesiologists including patient positioning, as well as adverse effects on pulmonary, cardiovascular and neurological systems.

The current chapter highlights the most important anesthesia related issues during robot-assisted surgery during the preoperative, intraoperative and post-operative phases. Recommendations are given for patient positioning, intraoperative management and post- operative care. Potential intraoperative emergencies are discussed and a protocol for a standardized ‘undocking’ procedure is described.

Keywords

Robot-assisted Gynecological anesthesia Da Vinci® Trendelenburg Emergency undocking Pneumoperitoneum Nerve injury Intra-ocular pressure 

References

  1. 1.
    Ng AT, Tam PC. Current status of robot-assisted surgery. Hong Kong Med J. 2014;20:241–50.PubMedGoogle Scholar
  2. 2.
    Pugin F, Bucher P, Morel P. History of robotic surgery: from AESOP(R) and ZEUS(R) to da Vinci(R). J Visc Surg. 2011;148:e3–8.CrossRefPubMedGoogle Scholar
  3. 3.
    Territo A, Mottrie A, Abaza R, et al. Robotic kidney transplantation: current status and future perspectives. Minerva Urol Nefrol. 2016;69(1):5–13.PubMedGoogle Scholar
  4. 4.
    Chauvet D, Hans S, Missistrano A, Rebours C, Bakkouri WE, Lot G. Transoral robotic surgery for sellar tumors: first clinical study. J Neurosurg. 2016;127(4):941–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Zhao Y, Jiao W, Ren X, et al. Left lower lobe sleeve lobectomy for lung cancer using the Da Vinci surgical system. J Cardiothorac Surg. 2016;11:59.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bellia A, Vitale SG, Lagana AS, et al. Feasibility and surgical outcomes of conventional and robot-assisted laparoscopy for early-stage ovarian cancer: a retrospective, multicenter analysis. Arch Gynecol Obstet. 2016;294:615–22.CrossRefGoogle Scholar
  7. 7.
    Krill LS, Bristow RE. Robotic surgery: gynecologic oncology. Cancer J. 2013;19:167–76.CrossRefPubMedGoogle Scholar
  8. 8.
    Lenihan JP Jr. Navigating credentialing, privileging, and learning curves in robotics with an evidence and experienced-based approach. Clin Obstet Gynecol. 2011;54:382–90.CrossRefPubMedGoogle Scholar
  9. 9.
    Himpens J, Leman G, Cadiere GB. Telesurgical laparoscopic cholecystectomy. Surg Endosc. 1998;12:1091.CrossRefPubMedGoogle Scholar
  10. 10.
    Medical Robotic Systems Market (Surgical Robots, Non-Invasive Radiosurgery Robotic Systems, Prosthetics and Exoskeletons, Assistive and Rehabilitation Robots, Non-Medical Robotics in Hospitals and Emergency Response Robotic Systems) - Global Industry Analysis, Size, Share, Growth, Trends and Forecast 2012–2018. 2013. http://www.transparencymarketresearch.com/medical-robotic-systems.html. Accessed May 2017.
  11. 11.
    Steenwyk B, Lyerly R 3rd. Advancements in robotic-assisted thoracic surgery. Anesthesiol Clin. 2012;30:699–708.CrossRefPubMedGoogle Scholar
  12. 12.
    Hu JC, Gu X, Lipsitz SR, et al. Comparative effectiveness of minimally invasive vs open radical prostatectomy. JAMA. 2009;302:1557–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Lim PC, Kang E, Park DH. Learning curve and surgical outcome for robotic-assisted hysterectomy with lymphadenectomy: case-matched controlled comparison with laparoscopy and laparotomy for treatment of endometrial cancer. J Minim Invasive Gynecol. 2010;17:739–48.CrossRefPubMedGoogle Scholar
  14. 14.
    Avondstondt AM, Wallenstein M, D’Adamo CR, Ehsanipoor RM. Change in cost after 5 years of experience with robotic-assisted hysterectomy for the treatment of endometrial cancer. J Robot Surg. 2017.  https://doi.org/10.1007/s11701-017-0700-6.
  15. 15.
    Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol. 2014;64:e77–137.CrossRefPubMedGoogle Scholar
  16. 16.
    Montalescot G, Sabatine MS. Oral dual antiplatelet therapy: what have we learnt from recent trials? Eur Heart J. 2016;37:344–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Evidence Review Committee M, Bittl JA, Baber U, Bradley SM, Wijeysundera DN. Duration of dual antiplatelet therapy: a systematic review for the 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2016;134:e156–78.CrossRefGoogle Scholar
  18. 18.
    Rist M, Hemmerling TM, Rauh R, Siebzehnrubl E, Jacobi KE. Influence of pneumoperitoneum and patient positioning on preload and splanchnic blood volume in laparoscopic surgery of the lower abdomen. J Clin Anesth. 2001;13:244–9.CrossRefPubMedGoogle Scholar
  19. 19.
    Speicher PJ, Ganapathi AM, Englum BR, Vaslef SN. Laparoscopy is safe among patients with congestive heart failure undergoing general surgery procedures. Surgery. 2014;156:371–8.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rauh R, Hemmerling TM, Rist M, Jacobi KE. Influence of pneumoperitoneum and patient positioning on respiratory system compliance. J Clin Anesth. 2001;13(5):361.CrossRefPubMedGoogle Scholar
  21. 21.
    Gerges FJ, Kanazi GE, Jabbour-Khoury SI. Anesthesia for laparoscopy: a review. J Clin Anesth. 2006;18:67–78.CrossRefPubMedGoogle Scholar
  22. 22.
    Salihoglu Z, Demiroluk S, Baca B, Ayan F, Kara H. Effects of pneumoperitoneum and positioning on respiratory mechanics in chronic obstructive pulmonary disease patients during Nissen fundoplication. Surg Laparosc Endosc Percutan Tech. 2008;18:437–40.CrossRefPubMedGoogle Scholar
  23. 23.
    Silvanus MT, Groeben H, Peters J. Corticosteroids and inhaled salbutamol in patients with reversible airway obstruction markedly decrease the incidence of bronchospasm after tracheal intubation. Anesthesiology. 2004;100:1052–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Halverson A, Buchanan R, Jacobs L, et al. Evaluation of mechanism of increased intracranial pressure with insufflation. Surg Endosc. 1998;12:266–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Irgau I, Koyfman Y, Tikellis JI. Elective intraoperative intracranial pressure monitoring during laparoscopic cholecystectomy. Arch Surg. 1995;130:1011–3.CrossRefPubMedGoogle Scholar
  26. 26.
    Mavrocordatos P, Bissonnette B, Ravussin P. Effects of neck position and head elevation on intracranial pressure in anaesthetized neurosurgical patients: preliminary results. J Neurosurg Anesthesiol. 2000;12:10–4.CrossRefPubMedGoogle Scholar
  27. 27.
    Kalmar AF, Foubert L, Hendrickx JF, et al. Influence of steep Trendelenburg position and CO(2) pneumoperitoneum on cardiovascular, cerebrovascular, and respiratory homeostasis during robotic prostatectomy. Br J Anaesth. 2010;104:433–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Park EY, Koo BN, Min KT, Nam SH. The effect of pneumoperitoneum in the steep Trendelenburg position on cerebral oxygenation. Acta Anaesthesiol Scand. 2009;53:895–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Jackman SV, Weingart JD, Kinsman SL, Docimo SG. Laparoscopic surgery in patients with ventriculoperitoneal shunts: safety and monitoring. J Urol. 2000;164(4):1352.CrossRefPubMedGoogle Scholar
  30. 30.
    Sankpal R, Chandavarkar A, Chandavarkar M. Safety of laparoscopy in ventriculoperitoneal shunt patients. J Gynecol Endosc Surg. 2011;2:91–3.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Staikou C, Tsaroucha A, Mani A, Fassoulaki A. Transcranial Doppler monitoring of middle cerebral flow velocity in a patient with a ventriculoperitoneal shunt undergoing laparoscopy. J Clin Monit Comput. 2012;26:487–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Awad H, Santilli S, Ohr M, et al. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg. 2009;109:473–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Adisa AO, Onakpoya OH, Adenekan AT, Awe OO. Intraocular pressure changes with positioning during laparoscopy. JSLS. 2016;20(4):e2016.00078.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Berger JS, Taghreed A, Dayo L, Paul D. Anesthetic considerations for robot-assisted gynecologic and urology surgery. J Anesthe Clinic Res. 2013;4:8.Google Scholar
  35. 35.
    Lee M, Dallas R, Daniel C, Cotter F. Intraoperative management of increased intraocular pressure in a patient with glaucoma undergoing robotic prostatectomy in the trendelenburg position. A A Case Rep. 2016;6:19–21.CrossRefPubMedGoogle Scholar
  36. 36.
    Borahay MA, Patel PR, Walsh TM, et al. Intraocular pressure and steep Trendelenburg during minimally invasive gynecologic surgery: is there a risk? J Minim Invasive Gynecol. 2013;20:819–24.CrossRefPubMedGoogle Scholar
  37. 37.
    Sampat A, Parakati I, Kunnavakkam R, et al. Corneal abrasion in hysterectomy and prostatectomy: role of laparoscopic and robotic assistance. Anesthesiology. 2015;122:994–1001.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Roth S, Thisted RA, Erickson JP, Black S, Schreider BD. Eye injuries after nonocular surgery. A study of 60,965 anesthetics from 1988 to 1992. Anesthesiology. 1996;85:1020–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Awad H, Walker CM, Shaikh M, Dimitrova GT, Abaza R, O’Hara J. Anesthetic considerations for robotic prostatectomy: a review of the literature. J Clin Anesth. 2012;24:494–504.CrossRefPubMedGoogle Scholar
  40. 40.
    Gutt CN, Oniu T, Mehrabi A, et al. Circulatory and respiratory complications of carbon dioxide insufflation. Dig Surg. 2004;21:95–105.CrossRefPubMedGoogle Scholar
  41. 41.
    Wiesenthal JD, Fazio LM, Perks AE, et al. Effect of pneumoperitoneum on renal tissue oxygenation and blood flow in a rat model. Urology. 2011;77:1508 e9–15.CrossRefGoogle Scholar
  42. 42.
    Demyttenaere S, Feldman LS, Fried GM. Effect of pneumoperitoneum on renal perfusion and function: a systematic review. Surg Endosc. 2007;21:152–60.CrossRefPubMedGoogle Scholar
  43. 43.
    Bagaria M, Luck AM. Postoperative (pressure) alopecia following sacrocolpopexy. J Robot Surg. 2015;9:149–51.CrossRefPubMedGoogle Scholar
  44. 44.
    Gollapalli L, Papapetrou P, Gupta D, Fuleihan SF. Post-operative alopecia after robotic surgery in steep Trendelenburg position: a restated observation of pressure alopecia. Middle East J Anaesthesiol. 2013;22:343–5.PubMedGoogle Scholar
  45. 45.
  46. 46.
    Patient Safety. http://www.who.int/patientsafety/safesurgery/en/. Accessed May 2017.
  47. 47.
    Yu EH, Tran DH, Lam SW, Irwin MG. Remifentanil tolerance and hyperalgesia: short-term gain, long-term pain? Anaesthesia. 2016;71:1347–62.CrossRefPubMedGoogle Scholar
  48. 48.
    Yoo YC, Shin S, Choi EK, Kim CY, Choi YD, Bai SJ. Increase in intraocular pressure is less with propofol than with sevoflurane during laparoscopic surgery in the steep Trendelenburg position. Can J Anaesth. 2014;61:322–9.CrossRefPubMedGoogle Scholar
  49. 49.
    Yoo YC, Bai SJ, Lee KY, Shin S, Choi EK, Lee JW. Total intravenous anesthesia with propofol reduces postoperative nausea and vomiting in patients undergoing robot-assisted laparoscopic radical prostatectomy: a prospective randomized trial. Yonsei Med J. 2012;53:1197–202.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Turner TB, Habib AS, Broadwater G, et al. Postoperative pain scores and narcotic use in robotic-assisted versus laparoscopic hysterectomy for endometrial cancer staging. J Minim Invasive Gynecol. 2015;22:1004–10.CrossRefPubMedGoogle Scholar
  51. 51.
    Pridgeon S, Bishop CV, Adshead J. Lower limb compartment syndrome as a complication of robot-assisted radical prostatectomy: the UK experience. BJU Int. 2013;112:485–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Wen T, Deibert CM, Siringo FS, Spencer BA. Positioning-related complications of minimally invasive radical prostatectomies. J Endourol. 2014;28:660–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Falabella A, Moore-Jeffries E, Sullivan MJ, Nelson R, Lew M. Cardiac function during steep Trendelenburg position and CO2 pneumoperitoneum for robotic-assisted prostatectomy: a trans-oesophageal Doppler probe study. Int J Med Robot. 2007;3:312–5.CrossRefPubMedGoogle Scholar
  54. 54.
    Odeberg S, Ljungqvist O, Svenberg T, et al. Haemodynamic effects of pneumoperitoneum and the influence of posture during anaesthesia for laparoscopic surgery. Acta Anaesthesiol Scand. 1994;38:276–83.CrossRefPubMedGoogle Scholar
  55. 55.
    Mets B. Should norepinephrine, rather than phenylephrine, be considered the primary vasopressor in anesthetic practice? Anesth Analg. 2016;122:1707–14.CrossRefPubMedGoogle Scholar
  56. 56.
    Ko EM, Muto MG, Berkowitz RS, Feltmate CM. Robotic versus open radical hysterectomy: a comparative study at a single institution. Gynecol Oncol. 2008;111:425–30.CrossRefPubMedGoogle Scholar
  57. 57.
    Sert BM, Boggess JF, Ahmad S, et al. Robot-assisted versus open radical hysterectomy: a multi-institutional experience for early-stage cervical cancer. Eur J Surg Oncol. 2016;42:513–22.CrossRefPubMedGoogle Scholar
  58. 58.
    Wallin E, Floter Radestad A, Falconer H. Introduction of robot-assisted radical hysterectomy for early stage cervical cancer: impact on complications, costs and oncologic outcome. Acta Obstet Gynecol Scand. 2017;96:536–42.CrossRefPubMedGoogle Scholar
  59. 59.
    Sprung J, Abdelmalak B, Schoenwald PK. Recurrent complete heart block in a healthy patient during laparoscopic electrocauterization of the Fallopian tube. Anesthesiology. 1998;88:1401–3.CrossRefPubMedGoogle Scholar
  60. 60.
    Choi EM, Na S, Choi SH, An J, Rha KH, Oh YJ. Comparison of volume-controlled and pressure-controlled ventilation in steep Trendelenburg position for robot-assisted laparoscopic radical prostatectomy. J Clin Anesth. 2011;23:183–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Jaju R, Jaju PB, Dubey M, Mohammad S, Bhargava AK. Comparison of volume controlled ventilation and pressure controlled ventilation in patients undergoing robot-assisted pelvic surgeries: an open-label trial. Indian J Anaesth. 2017;61:17–23.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gupta K, Mehta Y, Sarin Jolly A, Khanna S. Anaesthesia for robotic gynaecological surgery. Anaesth Intensive Care. 2012;40:614–21.PubMedGoogle Scholar
  63. 63.
    Lee JR. Anesthetic considerations for robotic surgery. Korean J Anesthesiol. 2014;66:3–11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Kim WH, Hahm TS, Kim JA, et al. Prolonged inspiratory time produces better gas exchange in patients undergoing laparoscopic surgery: a randomised trial. Acta Anaesthesiol Scand. 2013;57:613–22.CrossRefPubMedGoogle Scholar
  65. 65.
    Chang CH, Lee HK, Nam SH. The displacement of the tracheal tube during robot-assisted radical prostatectomy. Eur J Anaesthesiol. 2010;27:478–80.CrossRefPubMedGoogle Scholar
  66. 66.
    Phong SV, Koh LK. Anaesthesia for robotic-assisted radical prostatectomy: considerations for laparoscopy in the Trendelenburg position. Anaesth Intensive Care. 2007;35:281–5.PubMedGoogle Scholar
  67. 67.
    Mikaeili H, Yazdchi M, Tarzamni MK, Ansarin K, Ghasemzadeh M. Laryngeal ultrasonography versus cuff leak test in predicting postextubation stridor. J Cardiovasc Thorac Res. 2014;6:25–8.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Jackson SA, Laurence AS, Hill JC. Does post-laparoscopy pain relate to residual carbon dioxide? Anaesthesia. 1996;51:485–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Torup H, Bogeskov M, Hansen EG, et al. Transversus abdominis plane (TAP) block after robot-assisted laparoscopic hysterectomy: a randomised clinical trial. Acta Anaesthesiol Scand. 2015;59:928–35.CrossRefPubMedGoogle Scholar
  70. 70.
    Hutchins J, Delaney D, Vogel RI, et al. Ultrasound guided subcostal transversus abdominis plane (TAP) infiltration with liposomal bupivacaine for patients undergoing robotic assisted hysterectomy: a prospective randomized controlled study. Gynecol Oncol. 2015;138:609–13.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Walters Haygood CL, Fauci JM, Huddleston-Colburn MK, Huh WK, Straughn JM. Outcomes of gynecologic oncology patients undergoing robotic-assisted laparoscopic procedures in a university setting. J Robot Surg. 2014;8:207–11.CrossRefPubMedGoogle Scholar
  72. 72.
    Gaia G, Holloway RW, Santoro L, Ahmad S, Di Silverio E, Spinillo A. Robotic-assisted hysterectomy for endometrial cancer compared with traditional laparoscopic and laparotomy approaches: a systematic review. Obstet Gynecol. 2010;116:1422–31.CrossRefPubMedGoogle Scholar
  73. 73.
    Serati M, Bogani G, Sorice P, et al. Robot-assisted sacrocolpopexy for pelvic organ prolapse: a systematic review and meta-analysis of comparative studies. Eur Urol. 2014;66:303–18.CrossRefPubMedGoogle Scholar
  74. 74.
    Fleming ND, Havrilesky LJ, Valea FA, et al. Analgesic and antiemetic needs following minimally invasive vs open staging for endometrial cancer. Am J Obstet Gynecol. 2011;204:65 e1–6.CrossRefGoogle Scholar
  75. 75.
    Baker J, Janda M, Belavy D, Obermair A. Differences in epidural and analgesic use in patients with apparent stage I endometrial cancer treated by open versus laparoscopic surgery: results from the randomised LACE trial. Minim Invasive Surg. 2013;2013(764329)CrossRefGoogle Scholar
  76. 76.
    Rawal N. Epidural technique for postoperative pain: gold standard no more? Reg Anesth Pain Med. 2012;37:310–7.CrossRefPubMedGoogle Scholar
  77. 77.
    Nakano S, Nakahira J, Sawai T, Kadono N, Minami T. Unexpected hemorrhage during robot-assisted laparoscopic prostatectomy: a case report. J Med Case Rep. 2016;10:240.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Kim CS, Kim JY, Kwon JY, et al. Venous air embolism during total laparoscopic hysterectomy: comparison to total abdominal hysterectomy. Anesthesiology. 2009;111:50–4.CrossRefPubMedGoogle Scholar
  79. 79.
    Kaye AD, Vadivelu N, Ahuja N, Mitra S, Silasi D, Urman RD. Anesthetic considerations in robotic-assisted gynecologic surgery. Ochsner J. 2013;13:517–24.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Joshi GP. Complications of laparoscopy. Anesthesiol Clin North Am. 2001;19:89–105.CrossRefGoogle Scholar
  81. 81.
    Raveendran R, Prabu HN, Ninan S, Darmalingam S. Fast-track management of pneumothorax in laparoscopic surgery. Indian J Anaesth. 2011;55:91–2.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Ludemann R, Krysztopik R, Jamieson GG, Watson DI. Pneumothorax during laparoscopy. Surg Endosc. 2003;17:1985–9.CrossRefPubMedGoogle Scholar
  83. 83.
    Celik H, Cremins A, Jones KA, Harmanli O. Massive subcutaneous emphysema in robotic sacrocolpopexy. JSLS. 2013;17:245–8.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Crawford NM, Pathi SD, Corton MM. Pneumomediastinum after robotic sacrocolpopexy. Female Pelvic Med Reconstr Surg. 2014;20:56–8.CrossRefPubMedGoogle Scholar
  85. 85.
    Geerts WH, Bergqvist D, Pineo GF, et al. Prevention of venous thromboembolism: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133:381S–453S.CrossRefPubMedGoogle Scholar
  86. 86.
    Horlander KT, Mannino DM, Leeper KV. Pulmonary embolism mortality in the United States, 1979-1998: an analysis using multiple-cause mortality data. Arch Intern Med. 2003;163:1711–7.CrossRefPubMedGoogle Scholar
  87. 87.
    Mueller MG, Pilecki MA, Catanzarite T, Jain U, Kim JY, Kenton K. Venous thromboembolism in reconstructive pelvic surgery. Am J Obstet Gynecol. 2014;211, 552 e1:–6.CrossRefGoogle Scholar
  88. 88.
    Freeman AH, Barrie A, Lyon L, et al. Venous thromboembolism following minimally invasive surgery among women with endometrial cancer. Gynecol Oncol. 2016;142:267–72.CrossRefPubMedGoogle Scholar
  89. 89.
    Barber EL, Gehrig PA, Clarke-Pearson DL. Venous thromboembolism in minimally invasive compared with open hysterectomy for endometrial cancer. Obstet Gynecol. 2016;128:121–6.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Alemzadeh H, Raman J, Leveson N, Kalbarczyk Z, Iyer RK. Adverse events in robotic surgery: a retrospective study of 14 years of FDA data. PLoS One. 2016;11:e0151470.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    O’Sullivan OE, O’Sullivan S, Hewitt M, O’Reilly BA. Da Vinci robot emergency undocking protocol. J Robot Surg. 2016;10(3):251.CrossRefPubMedGoogle Scholar
  92. 92.
    Huser AS, Muller D, Brunkhorst V, et al. Simulated life-threatening emergency during robot-assisted surgery. J Endourol. 2014;28:717–21.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Eilish M. Galvin
    • 1
  • Henri J. D. de Graaff
    • 1
  1. 1.Department of AnesthesiologyErasmus University Medical CenterRotterdamThe Netherlands

Personalised recommendations