Anesthesiology pp 329-340 | Cite as

Anesthesia for Spinal Surgery in Children

  • Ali KandilEmail author
  • Deepika S. Rao
  • Mohamed Mahmoud


The evolution of pediatric anesthesia and pediatric spine surgery has had a parallel trajectory and as it stands, pediatric spine surgery has cemented itself as a cornerstone of most pediatric anesthesia practices. Certainly, the advancement of pediatric anesthesia has facilitated safe and effective care of these patients. In addition to scoliosis, spinal dysraphisms such as myelomeningocele and tethered cord frequently require surgical intervention. Many of these patients have multiple medical issues and pose distinct anatomic and physiologic challenges that affect preoperative, intraoperative, and postoperative anesthetic management.


Scoliosis Anesthesia Myelomeningocele Tethered cord Arnold Chiari II malformation Antifibrinolytic 


  1. 1.
    Singh D, Rath GP, Dash HH, Bithal PK. Anesthetic concerns and perioperative complications in repair of myelomeningocele: a retrospective review of 135 cases. J Neurosurg Anesthesiol. 2010;22:11–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Barois A. Respiratory problems in severe scoliosis. Bull Acad Natl Med. 1999;183(4):721–30.PubMedGoogle Scholar
  3. 3.
    Salem MR, Klowden AJ. Anesthesia for orthopedic surgery. In: Gregory GA, editor. Pediatric anesthesia. New York: Churchill Livingstone; 2002. p. 617–61.Google Scholar
  4. 4.
    Yuan N, Skaggs DL, Dorey F, Keens TG. Preoperative predictors of prolonged postoperative mechanical ventilation in children following scoliosis repair. Pediatr Pulmonol. 2005;40(5):414–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Raw DA, Beattie JK, Hunter JM. Anaesthesia for spinal surgery in adults. Br J Anaesth. 2003;91:886–904.CrossRefPubMedGoogle Scholar
  6. 6.
    DiCindio S, Arai L, McCulloch M, Sadacharam K, Shah SA, Gabos P, Dabney K, Theroux MC. Clinical relevance of echocardiogram in patients with cerebral palsy undergoing posterior spinal fusion. Paediatr Anaesth. 2015;25(8):840–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Edler A, Murray DJ, Forbes RB. Blood loss during posterior spinal fusion surgery in patients with neuromuscular disease: is there an increased risk? Paediatr Anaesth. 2003;13:818–22.CrossRefPubMedGoogle Scholar
  8. 8.
    Florentino-Pineda I, Thompson GH, Poe-Kochert C, Huang RP, Haber LL, Blakemore LC. The effect of amicar on perioperative blood loss in idiopathic scoliosis: the results of a prospective, randomized double-blind study. Spine (Phila Pa 1976). 2004;29:233–8.CrossRefGoogle Scholar
  9. 9.
    Jevsevar DS, Karlin LI. The relationship between preoperative nutritional status and complications after an operation for scoliosis in patients who have cerebral palsy. J Bone Joint Surg Am. 1993;75:880–4.CrossRefPubMedGoogle Scholar
  10. 10.
    McIntyre IW, Francis L, McAuliffe JJ. Transcranial motor-evoked potentials are more readily acquired than somatosensory-evoked potenitals in children younger than 6 years. Anesth Analg. 2016;122:212–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Szelényi A, Bueno de Camargo A, Deletis V. Neurophysiological evaluation of the corticospinal tract by D-wave recordings in young children. Childs Nerv Syst. 2003;19:30–4. Cracco JB, Cracco RQ. Spinal somatosensory evoked potentials: maturational and clinical studies. Ann N Y Acad Sci. 1982;388:526–37.PubMedGoogle Scholar
  12. 12.
    Kurz A, Sessler DI, Lenhardt R. Study of Wound Infection and Temperature Group. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med. 1996;334:1209–15.CrossRefPubMedGoogle Scholar
  13. 13.
    Sloan TB. Anesthetics and the brain. Anesthesiol Clin North Am. 2002;20:265–92.CrossRefGoogle Scholar
  14. 14.
    Samra SK, Vanderzant CW, Domer PA, Sackellares JC. Differential effects of isoflurane on human median nerve somatosensory evoked potentials. Anesthesiology. 1987;66:29–35.CrossRefPubMedGoogle Scholar
  15. 15.
    Peterson DO, Drummond JC, Todd MM. Effects of halothane, enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials in humans. Anesthesiology. 1986;65:35–40.CrossRefPubMedGoogle Scholar
  16. 16.
    McPherson RW, Mahla M, Johnson R, Traystman RJ. Effects of enflurane, isoflurane, and nitrous oxide on somatosensory evoked potentials during fentanyl anesthesia. Anesthesiology. 1985;62:626–33.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Schindler E, Müller M, Zickmann B, Osmer C, Wozniak G, Hempelmann G. Modulation of somatosensory evoked potentials under various concentrations of desflurane with and without nitrous oxide. J Neurosurg Anesthesiol. 1998;10:218–23.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Wolfe DE, Drummond JC. Differential effects of isoflurane/nitrous oxide on posterior tibial somatosensory evoked responses of cortical and subcortical origin. Anesth Analg. 1988;67:852–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Thees C, Scheufler KM, Nadstawek J, et al. Influence of fentanyl, alfentanil, and sufentanil on motor evoked potentials. J Neurosurg Anesthesiol. 1999;11:112–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Ubags LH, Kalkman CJ, Been HD, Drummond JC. Differential effects of nitrous oxide and propofol on myogenic transcranial motor evoked responses during sufentanil anaesthesia. Br J Anaesth. 1997;79:590–4.CrossRefPubMedGoogle Scholar
  21. 21.
    Lo YL, Dan YF, Tan YE, et al. Intraoperative motor-evoked potential monitoring in scoliosis surgery: comparison of desflurane/nitrous oxide with propofol total intravenous anesthetic regimens. J Neurosurg Anesthesiol. 2006;18:211–4.CrossRefPubMedGoogle Scholar
  22. 22.
    Lotto ML, Banoub M, Schubert A. Effects of anesthetic agents and physiologic changes on intraoperative motor evoked potentials. J Neurosurg Anesthesiol. 2004;16:32–42.CrossRefPubMedGoogle Scholar
  23. 23.
    Bala E, Sessler DI, Nair DR, McLain R, Dalton JE, Farag E. Motor and somatosensory evoked potentials are well maintained in patients given dexmedetomidine during spine surgery. Anesthesiology. 2008;109:417–25.CrossRefPubMedGoogle Scholar
  24. 24.
    Au KS, Northrup H, Allison-Koch A. Epidemiology and genetic aspects of spina bifida and other neural tube defects. Dev Disabil Res Rev. 2010;16:6–15.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Milunsky A, Jick H, Jick SS, Bruell CL, MacLaughlin DS, Rothman KJ, Willett W. Multivitamin/folic acid supplementation in early pregnancy reduces the prevalence of neural tube defects. JAMA. 1989;262(20):2847–52.CrossRefPubMedGoogle Scholar
  26. 26.
    McLone DG, Knepper PA. The cause of Chiari II malformations: a unified theory. Pediatr Neurosci. 1989;15:1–12.CrossRefPubMedGoogle Scholar
  27. 27.
    Fletcher JM, Copeland K, Frederick JA, Blaser SE, Kramer LA, Northrup H, Hannay HJ, Brandt ME, Francis DJ, Villarreal G, Drake JM, Laurent JP, Townsend I, Inwood S, Boudousquie A, Dennis M. Spinal lesion level in spina bifida: a source of neural and cognitive heterogeneity. J Neurosurg. 2005;102(3 Suppl):268–79.PubMedGoogle Scholar
  28. 28.
    Dennis M, Salman MS, Juranek J, Fletcher JM. Cerebellar motor function in spina bifida meningomyelocele. Cerebellum. 2010;9(4):484–98.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Dias MS. Neurosurgical causes of scoliosis in patients with myelomeningocele: an evidence-based literature review. J Neurosurg. 2005;103(1 Suppl):24–35.PubMedGoogle Scholar
  30. 30.
    Samuelsson L, Eklöf O. Scoliosis in myelomeningocele. Acta Orthop Scand. 1988;59:122–7.CrossRefPubMedGoogle Scholar
  31. 31.
    Hudgins RJ, Gilreath CL. Tethered spinal cord following repair of myelomeningocele. Neurosurg Focus. 2004;16(2):E7.CrossRefPubMedGoogle Scholar
  32. 32.
    Tamburrini G, Frassanito P, Iakovaki K, Pignotti F, Rendeli C, Murolo D, Di Rocco C. Myelomeningocele: the management of the associated hydrocephalus. Childs Nerv Syst. 2013;29(9):1569–79.CrossRefPubMedGoogle Scholar
  33. 33.
    Messing-Jünger M, Röhrig A. Primary and secondary management of the Chiari II malformation in children with myelomeningocele. Childs Nerv Syst. 2013;29(9):1553–62.CrossRefPubMedGoogle Scholar
  34. 34.
    Rintoul NE, Sutton LN, Hubbard AM, Cohen B, Melchionni J, Pasquariello PS, Adzick NS. A new look at myelomeningoceles: functional level, vertebral level, shunting, and the implications for fetal intervention. Pediatrics. 2002;109(3):409–13.CrossRefPubMedGoogle Scholar
  35. 35.
    Oren J, Kelly DH, Todres ID. Respiratory complications in patients with myelodysplasia and Arnold-Chiari malformation. Am J Dis Child. 1986;140:221–4.PubMedGoogle Scholar
  36. 36.
    Wu YW, Croen LA, Henning L, Najjar DV, Schembri M, Croughan MS. Potential association between infertility and spinal neural tube defects in offspring. Birth Defects Res A Clin Mol Teratol. 2006;76(10):718–22.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Dias MS. Neurosurgical management of myelomeningocele (Spina Bifida). Pediatr Rev. 2005;26(2):50–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Pollack IF, Kinnunen D, Albright AL. The effect of early craniocervical decompression on functional outcome in neonates and young infants with myelodysplasia and symptomatic Chiari II malformations: results from a prospective series. Neurosurgery. 1996;38(4):703–10.CrossRefPubMedGoogle Scholar
  39. 39.
    Attenello FJ, Tuchman A, Christian EA, Wen T, Chang KE, Nallapa S, Cen SY, Mack WJ, Krieger MD, McComb JG. Infection rate correlated with time to repair of open neural tube defects (myelomeningoceles): an institutional and national study. Childs Nerv Syst. 2016;32(9):1675–81.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tarcan T, Onol FF, Ilker Y, Alpay H, Simşek F, Ozek M. The timing of primary neurosurgical repair significantly affects neurogenic bladder prognosis in children with myelomeningocele. J Urol. 2006;176(3):1161–5.CrossRefPubMedGoogle Scholar
  41. 41.
    Conran AM, Kahana M. Anesthetic considerations in neonatal neurosurgical patients. Neurosurg Clin N Am. 1998;9(1):181–5.PubMedCrossRefGoogle Scholar
  42. 42.
    Mellor DJ, Lerman J. Anesthesia for neonatal surgical emergencies. Semin Perinatol. 1998;22(5):363–79.CrossRefPubMedGoogle Scholar
  43. 43.
    Ritter S, Tani LY, Shaddy RE, Minich LL. Are screening echocardiograms warranted for neonates with meningomyelocele? Arch Pediatr Adolesc Med. 1999;153:1264–6.CrossRefPubMedGoogle Scholar
  44. 44.
    Bowman RM, Mclone DG, Grant JA, Tomita T. Spina bifida outcome: a 25-year prospective. Pediatr Neurosurg. 2001;34(3):114–20.CrossRefPubMedGoogle Scholar
  45. 45.
    Talamonti G, D’Aliberti G, Colice M. Myelomeningocele: long-term neurosurgical treatment and follow-up in 202 patients. J Neurosurg. 2007;107(5 Suppl):368–86.PubMedGoogle Scholar
  46. 46.
    Lew SM, Kothbauer KF. Tethered cord syndrome: an updated review. Pediatr Neurosurg. 2007;43(3):236–48.CrossRefPubMedGoogle Scholar
  47. 47.
    Al-Holou WN, Muraszko KM, Garton HJ, Buchman SR, Maher CO. The outcome of tethered cord release in secondary and multiple repeat tethered cord syndrome. J Neurosurg Pediatr. 2009;4(1):28–36.CrossRefPubMedGoogle Scholar
  48. 48.
    Maher CO, Goumnerova L, Madsen JR, Proctor M, Scott RM. Outcome following multiple repeated spinal cord untethering operations. J Neurosurg. 2007;106(6 Suppl):434–8.PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cincinnati Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations