Loose Graph Simulations

  • Alessio MansuttiEmail author
  • Marino Miculan
  • Marco Peressotti
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10748)


We introduce loose graph simulations (LGS), a new notion about labelled graphs which subsumes in an intuitive and natural way subgraph isomorphism (SGI), regular language pattern matching (RLPM) and graph simulation (GS). Being a unification of all these notions, LGS allows us to express directly also problems which are “mixed” instances of previous ones, and hence which would not fit easily in any of them. After the definition and some examples, we show that the problem of finding loose graph simulations is NP-complete, we provide formal translation of SGI, RLPM, and GS into LGSs, and we give the representation of a problem which extends both SGI and RLPM. Finally, we identify a subclass of the LGS problem that is polynomial.



We thank the anonymous reviewers and the participants to the GCM’17 workshop for their comments. We thank Andrea Corradini for his insightful observations on a preliminary version of this work and for proposing the name “loose graph simulations”.


  1. 1.
    Apostolakis, J., Körner, R., Marialke, J.: Embedded subgraph isomorphism and its applications in cheminformatics and metabolomics. In: 1st German Conference in Chemoinformatics (2005)Google Scholar
  2. 2.
    Barceló, P., Libkin, L., Reutter, J.L.: Querying regular graph patterns. J. ACM 61(1), 8:1–8:54 (2014)Google Scholar
  3. 3.
    Bloom, B., Paige, R.: Transformational design and implementation of a new efficient solution to the ready simulation problem. J. SCP 24(3), 189–220 (1995)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bonnici, V., Giugno, R., Pulvirenti, A., Shasha, D.E., Ferro, A.: A subgraph isomorphism algorithm and its application to biochemical data. BMC Bioinform. 14(S-7), S13 (2013)Google Scholar
  5. 5.
    Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput. Surv. 38, 2 (2006)CrossRefGoogle Scholar
  6. 6.
    Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158. ACM (1971)Google Scholar
  7. 7.
    Cordella, L.P., Foggia, P., Sansone, C., Vento, M.: A (sub)graph isomorphism algorithm for matching large graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(10), 1367–1372 (2004)CrossRefGoogle Scholar
  8. 8.
    Fan, W.: Graph pattern matching revised for social network analysis. In: ICDT, pp. 8–21. ACM (2012)Google Scholar
  9. 9.
    Fan, W., Li, J., Ma, S., Tang, N., Wu, Y.: Adding regular expressions to graph reachability and pattern queries. Front. Comput. Sci. 6(3), 313–338 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Fan, W., Wang, X., Wu, Y., Deng, D.: Distributed graph simulation: impossibility and possibility. PVLDB 7(12), 1083–1094 (2014)Google Scholar
  11. 11.
    Floyd, R.W.: Algorithm 97: shortest path. Commun. ACM 5(6), 345 (1962)CrossRefGoogle Scholar
  12. 12.
    Grohmann, D., Miculan, M.: Directed bigraphs. In: Proceedings of MFPS. Electronic Notes in Theoretical Computer Science, vol. 173, pp. 121–137. Elsevier (2007)Google Scholar
  13. 13.
    Henzinger, M.R., Henzinger, T.A., Kopke, P.W.: Computing simulations on finite and infinite graphs. In: FOCS, pp. 453–462. IEEE Computer Society (1995)Google Scholar
  14. 14.
    Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation - International Edition, 2 edn. Addison-Wesley, Boston (2003)Google Scholar
  15. 15.
    Lischka, J., Karl, H.: A virtual network mapping algorithm based on subgraph isomorphism detection. In: VISA, pp. 81–88. ACM (2009)Google Scholar
  16. 16.
    Mansutti, A.: Le simulazioni lasche: definizione, applicazioni e computazione distribuita. Master’s thesis, University of Udine (2016)Google Scholar
  17. 17.
    Mansutti, A., Miculan, M., Peressotti, M.: Distributed execution of bigraphical reactive systems. ECEASST 71, 1–21 (2014)Google Scholar
  18. 18.
    Mansutti, A., Miculan, M., Peressotti, M.: Multi-agent systems design and prototyping with bigraphical reactive systems. In: Magoutis, K., Pietzuch, P. (eds.) DAIS 2014. LNCS, vol. 8460, pp. 201–208. Springer, Heidelberg (2014). CrossRefGoogle Scholar
  19. 19.
    Mansutti, A., Miculan, M., Peressotti, M.: Towards distributed bigraphical reactive systems. In: Echahed, R., Habel, A., Mosbah, M. (eds.) Proceedings of GCM (2014)Google Scholar
  20. 20.
    Mendelzon, A.O., Wood, P.T.: Finding regular simple paths in graph databases. SIAM J. Comput. 24(6), 1235–1258 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Miculan, M., Peressotti, M.: Bigraphs reloaded: a presheaf presentation. Technical report UDMI/01/2013, University of Udine (2013)Google Scholar
  22. 22.
    Miculan, M., Peressotti, M.: A CSP implementation of the bigraph embedding problem. CoRR, abs/1412.1042 (2014)Google Scholar
  23. 23.
    Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press, Cambridge (2009)Google Scholar
  24. 24.
    Pevzner, P.: Computational Molecular Biology - an Algorithmic Approach. MIT Press, Cambridge (2000)Google Scholar
  25. 25.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar
  26. 26.
    Thompson, K.: Regular expression search algorithm. Commun. ACM 11, 419–422 (1968)CrossRefzbMATHGoogle Scholar
  27. 27.
    Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23, 31–42 (1976)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yan, X., Han, J.: gSpan: graph-based substructure pattern mining. In: ICDM, pp. 721–724. IEEE Computer Society (2002)Google Scholar
  29. 29.
    Ziadi, D.: Regular expression for a language without empty word. Theor. Comput. Sci. 163(1&2), 309–315 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Alessio Mansutti
    • 1
    Email author
  • Marino Miculan
    • 1
  • Marco Peressotti
    • 2
  1. 1.Department of Mathematics, Computer Science and PhysicsUniversity of UdineUdineItaly
  2. 2.Department of Mathematics and Computer ScienceUniversity of Southern DenmarkOdenseDenmark

Personalised recommendations