Generating Efficient Predictive Shift-Reduce Parsers for Hyperedge Replacement Grammars

  • Berthold Hoffmann
  • Mark MinasEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10748)


Predictive shift-reduce (PSR) parsing for a subclass of hyperedge replacement graph grammars has recently been devised by Frank Drewes and the authors. This paper describes in detail how efficient PSR parsers are generated with the Grappa parser generator implemented by Mark Minas. Measurements confirm that the generated parsers run in linear time.


Hyperedge replacement grammar Graph parsing Parser generator 


  1. 1.
    Courcelle, B., Engelfriet, J.: Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach. Encyclopedia of Mathematics and its Applications, vol. 138. Cambridge University Press, Cambridge (2012)Google Scholar
  2. 2.
    Drewes, F., Hoffmann, B.: Contextual hyperedge replacement. Acta Inform. 52, 497–524 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Drewes, F., Hoffmann, B., Minas, M.: Contextual hyperedge replacement. In: Schürr, A., Varró, D., Varró, G. (eds.) AGTIVE 2011. LNCS, vol. 7233, pp. 182–197. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  4. 4.
    Drewes, F., Hoffmann, B., Minas, M.: Predictive top-down parsing for hyperedge replacement grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 19–34. Springer, Cham (2015). CrossRefGoogle Scholar
  5. 5.
    Drewes, F., Hoffmann, B., Minas, M.: Approximating Parikh images for generating deterministic graph parsers. In: Milazzo, P., Varró, D., Wimmer, M. (eds.) STAF 2016. LNCS, vol. 9946, pp. 112–128. Springer, Cham (2016). CrossRefGoogle Scholar
  6. 6.
    Drewes, F., Hoffmann, B., Minas, M.: Predictive shift-reduce parsing for hyperedge replacement grammars. In: de Lara, J., Plump, D. (eds.) ICGT 2017. LNCS, vol. 10373, pp. 106–122. Springer, Cham (2017). CrossRefGoogle Scholar
  7. 7.
    Earley, J., Sturgis, H.: A formalism for translator interactions. Commun. ACM 13(10), 607–617 (1970)CrossRefzbMATHGoogle Scholar
  8. 8.
    Engelfriet, J., Rozenberg, G.: Node replacement graph grammars. In: Rozenberg, G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. I, Chap. 1, pp. 1–94. World Scientific, Singapore (1997)Google Scholar
  9. 9.
    Franck, R.: A class of linearly parsable graph grammars. Acta Inform. 10(2), 175–201 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643. Springer, Heidelberg (1992). zbMATHGoogle Scholar
  11. 11.
    Kaul, M.: Practical applications of precedence graph grammars. In: Ehrig, H., Nagl, M., Rozenberg, G., Rosenfeld, A. (eds.) Graph Grammars 1986. LNCS, vol. 291, pp. 326–342. Springer, Heidelberg (1987). CrossRefGoogle Scholar
  12. 12.
    Minas, M.: Diagram editing with hypergraph parser support. In: Proceedings of 1997 IEEE Symposium on Visual Languages (VL 1997), Capri, Italy, pp. 226–233. IEEE Computer Society Press (1997)Google Scholar
  13. 13.
    Minas, M.: Concepts and realization of a diagram editor generator based on hypergraph transformation. Sci. Comput. Program. 44(2), 157–180 (2002)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Universität BremenBremenGermany
  2. 2.Universität der Bundeswehr MünchenNeubibergGermany

Personalised recommendations