Non-human Modelers: Challenges and Roadmap for Reusable Self-explanation

  • Antonio Garcia-DominguezEmail author
  • Nelly Bencomo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10748)


Increasingly, software acts as a “non-human modeler” (NHM), managing a model according to high-level goals rather than a predefined script. To foster adoption, we argue that we should treat these NHMs as members of the development team. In our GrandMDE talk, we discussed the importance of three areas: effective communication (self-explanation and problem-oriented configuration), selection, and process integration. In this extended version of the talk, we will expand on the self-explanation area, describing its background in more depth and outlining a research roadmap based on a basic case study.


  1. 1.
    PROV Model Primer. W3C Working Group Note, World Wide Web Consortium, April 2013.
  2. 2.
    Barmpis, K., Kolovos, D.: Hawk: towards a scalable model indexing architecture. In: Proceedings of the Workshop on Scalability in Model Driven Engineering, Budapest, Hungary. ACM (2013).
  3. 3.
    Buneman, P., Khanna, S., Tan, W.-C.: Why and where: a characterization of data provenance. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 316–330. Springer, Heidelberg (2001). CrossRefGoogle Scholar
  4. 4.
    Burger, E., Mittelbach, V., Koziolek, A.: View-based and model-driven outage management for the smart grid. In: Proceedings of the 11th International Workshop on Models@run.time, Saint Malo, France, pp. 1–8., October 2016.
  5. 5.
    Cleland-Huang, J., Gotel, O.C.Z., Huffman Hayes, J., Mäder, P., Zisman, A.: Software traceability: trends and future directions. In: Proceedings of the on Future of Software Engineering, FOSE 2014, pp. 55–69. ACM, New York (2014).
  6. 6.
    Debreceni, C., Ráth, I., Varró, D., De Carlos, X., Mendialdua, X., Trujillo, S.: Automated model merge by design space exploration. In: Stevens, P., Wąsowski, A. (eds.) FASE 2016. LNCS, vol. 9633, pp. 104–121. Springer, Heidelberg (2016). CrossRefGoogle Scholar
  7. 7.
    Garcia-Dominguez, A., Barmpis, K., Kolovos, D.S., Wei, R., Paige, R.F.: Stress-testing remote model querying APIs for relational and graph-based stores. Softw. Syst. Model. 1–29 (2017).
  8. 8.
    Garcia-Dominguez, A., Krikava, F., Rose, L.M. (eds.): Proceedings of the 9th Transformation Tool Contest, CEUR Workshop Proceedings, vol. 1758, December 2016. ISSN 1613–0073
  9. 9.
    Garcia Paucar, L.H., Bencomo, N.: Runtime models based on dynamic decision networks: enhancing the decision-making in the domain of ambient assisted living applications. In: Proceedings of the 11th International Workshop on Models@run.time, Saint Malo, France, pp. 9–17., October 2016.
  10. 10.
    Giese, H., Bencomo, N., Pasquale, L., Ramirez, A.J., Inverardi, P., Wätzoldt, S., Clarke, S.: Living with uncertainty in the age of runtime models. In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 47–100. Springer, Cham (2014). CrossRefGoogle Scholar
  11. 11.
    Gotel, O.C.Z., Finkelstein, C.W.: An analysis of the requirements traceability problem. In: Proceedings of IEEE International Conference on Requirements Engineering, pp. 94–101, April 1994Google Scholar
  12. 12.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., Valduriez, P.: ATL: a QVT-like transformation language. In: Companion to the 21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and Applications, OOPSLA 2006, pp. 719–720. ACM, New York (2006).
  13. 13.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003). MathSciNetCrossRefGoogle Scholar
  14. 14.
    Koegel, M., Helming, J.: EMFStore: a model repository for EMF models. In: Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2, pp. 307–308. ACM (2010)Google Scholar
  15. 15.
    Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transformation language. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  16. 16.
    Matragkas, N.D., Kolovos, D.S., Paige, R.F., Zolotas, A.: A traceability-driven approach to model transformation testing. In: Proceedings of the Second Workshop on the Analysis of Model Transformations (AMT 2013), Miami, FL, USA, 29 September 2013 (2013).
  17. 17.
    Pagán, J.E., Cuadrado, J.S., Molina, J.G.: A repository for scalable model management. Softw. Syst. Model. 14(1), 219–239 (2015). CrossRefGoogle Scholar
  18. 18.
    Paige, R.F., Drivalos, N., Kolovos, D.S., Fernandes, K.J., Power, C., Olsen, G.K., Zschaler, S.: Rigorous identification and encoding of trace-links in model-driven engineering. Softw. Syst. Model. 10(4), 469–487 (2011). CrossRefGoogle Scholar
  19. 19.
    Wätzoldt, S., Giese, H.: Classifying distributed self-* systems based on runtime models and their coupling. In: Proceedings of the 9th International Workshop on Models at run.time, pp. 11–20 (2014).

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.School of Engineering and Applied ScienceAston UniversityBirminghamUK

Personalised recommendations