Analysis of Schema Frequencies in Genetic Programming

  • Bogdan BurlacuEmail author
  • Michael Affenzeller
  • Michael Kommenda
  • Gabriel Kronberger
  • Stephan Winkler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10671)


Genetic Programming (GP) schemas are structural templates equivalent to hyperplanes in the search space. Schema theories provide information about the properties of subsets of the population and the behavior of genetic operators. In this paper we propose a practical methodology to identify relevant schemas and measure their frequency in the population. We demonstrate our approach on an artificial symbolic regression benchmark where the parts of the formula are already known. Experimental results reveal how solutions are assembled within GP and explain diversity loss in GP populations through the proliferation of repeated patterns.


Genetic Programming Schema analysis Symbolic regression Tree pattern matching Evolutionary dynamics Loss of diversity 



The work described in this paper was done within the COMET Project Heuristic Optimization in Production and Logistics (HOPL), #843532 funded by the Austrian Research Promotion Agency (FFG).


  1. 1.
    Affenzeller, M., Wagner, S.: Offspring selection: a new self-adaptive selection scheme for genetic algorithms. In: Ribeiro, B., Albrecht, R.F., Dobnikar, A., Pearson, D.W., Steele, N.C. (eds.) Adaptive and Natural Computing Algorithms, pp. 218–221. Springer, Vienna (2005). CrossRefGoogle Scholar
  2. 2.
    Götz, M., Koch, C., Martens, W.: Efficient algorithms for descendant-only tree pattern queries. Inf. Syst. 34(7), 602–623 (2009)CrossRefGoogle Scholar
  3. 3.
    Langdon, W.B., Banzhaf, W.: Repeated patterns in genetic programming. Nat. Comput. 7(4), 589–613 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Poli, R.: Exact schema theory for genetic programming and variable-length genetic algorithms with one-point crossover. Genet. Program Evolvable Mach. 2(2), 123–163 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Poli, R., Langdon, W.B., Dignum, S.: Generalisation of the limiting distribution of program sizes in tree-based genetic programming and analysis of its effects on bloat. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary, GECCO 2007, pp. 1588–1595. Press (2007)Google Scholar
  6. 6.
    Poli, R., Mcphee, N.F.: Covariant parsimony pressure for genetic programming (2008)Google Scholar
  7. 7.
    Poli, R., McPhee, N.F.: General schema theory for genetic programming with subtree-swapping crossover: part I. Evol. Comput. 11(1), 53–66 (2003)CrossRefGoogle Scholar
  8. 8.
    Smart, W., Andreae, P., Zhang, M.: Empirical analysis of GP tree-fragments. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 55–67. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  9. 9.
    Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure for models generated by symbolic regression via Pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)CrossRefGoogle Scholar
  10. 10.
    White, D.: An overview of schema theory. CoRR abs/1401.2651 (2014).
  11. 11.
    Wilson, G.C., Heywood, M.I.: Context-based repeated sequences in linear genetic programming. In: Keijzer, M., Tettamanzi, A., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 240–249. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  12. 12.
    Winkler, S., Affenzeller, M., Burlacu, B., Kronberger, G., Kommenda, M., Fleck, P.: Similarity-based analysis of population dynamics in genetic programming performing symbolic regression. In: Genetic Programming Theory and Practice XIV. Genetic and Evolutionary Computation. Springer (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Bogdan Burlacu
    • 1
    • 2
    Email author
  • Michael Affenzeller
    • 1
    • 2
  • Michael Kommenda
    • 1
    • 2
  • Gabriel Kronberger
    • 1
  • Stephan Winkler
    • 1
  1. 1.Heuristic and Evolutionary Algorithms LaboratoryUniversity of Applied Sciences Upper AustriaHagenbergAustria
  2. 2.Institute for Formal Models and VerificationJohannes Kepler UniversityLinzAustria

Personalised recommendations