Advertisement

The 70 KDA Heat Shock Protein Hsp70 as Part of a Protein Disaggregase System

  • Maria Luiza Caldas Nogueira
  • Juliana Crotti Franco
  • Gabriela de Mello Gandelini
  • Carlos Henrique Inacio Ramos
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 13)

Abstract

Proteins participate in a wide variety of cellular functions, which enable many activities in our body. However, proteins need to reach their correct state of folding to function properly. In the cell, the folding of many nascent proteins is aided by the 70 kDa heat shock protein (Hsp70). When folding is not favorable, misfolded species accumulate leading to the formation of aggregates, which leads to loss of function and is the basis of several diseases. In addition to its function of aiding folding, Hsp70 is also an important agent in disaggregation, sometimes acting in a bichaperone system together with Hsp100 in several organisms, such as bacteria, fungi and plants. Surprisingly, animals lack a bonafide Hsp100 orthologue. To overcome this limitation, animals evolved a Hsp70-based disaggregation system, in which Hsp70 cooperates with Hsp40 and Hsp110 co-chaperones to reactivate aggregated substrates. This chapter revises the most recent models for the mechanism of interaction between these proteins and how they cooperate to solubilize protein aggregates.

Keywords

Disaggregase Hsp40 Hsp70 Hsp100 Hsp110 Misfolding 

Notes

Acknowledgments

FAPESP (2012/50161-8), CNPq and CAPES for grants and fellowships.

References

  1. Abrahão, J., Mokry, D. Z., & Ramos, C. H. (2017). Hsp78 (78 kDa heat shock protein), a representative AAA family member found in the mitochondrial matrix of Saccharomyces Cerevisiae. Mini review article. Frontiers in Molecular Biosciences, 4, 60.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abu-Hamad, S., Kahn, J., Leyton-Jaimes, M. F., Rosenblatt, J., & Israelson, A. (2017). Misfolded SOD1 accumulation and mitochondrial association contribute to the selective vulnerability of motor neurons in familial ALS: Correlation to human disease. ACS Chemical Neuroscience, 8(10), 2225–2234.PubMedCrossRefGoogle Scholar
  3. Aguado, A., Fernandez-Higuero, J. A., Moro, F., & Muga, A. (2015). Chaperone-assisted protein aggregate reactivation: Different solutions for the same problem. Archives of Biochemistry and Biophysics, 580, 121–134.PubMedCrossRefGoogle Scholar
  4. Akiyama, H., Kondo, H., Arai, T., Ikeda, K., Kato, M., Iseki, E., Schwab, C., & McGeer, P. L. (2004). Expression of BRI, the normal precursor of the amyloid protein of familial British dementia, in human brain. Acta Neuropathologica, 107, 53–58.PubMedCrossRefGoogle Scholar
  5. Alderson, T. R., Kim, J. H., & Markley, J. L. (2016). Dynamical structures of Hsp70 and Hsp70-Hsp40 complexes. Structure (London, England), 24, 1014–1030.CrossRefGoogle Scholar
  6. Alzheimer’s Association. (2016). 2016 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 12, 459–509.CrossRefGoogle Scholar
  7. Anderson, J. F., Siller, E., & Barral, J. M. (2011). Disorders of protein biogenesis and stability. Protein and Peptide Letters, 18, 110–121.PubMedCrossRefGoogle Scholar
  8. Andreasson, C., Fiaux, J., Rampelt, H., Druffel-Augustin, S., & Bukau, B. (2008a). Insights into the structural dynamics of the Hsp110-Hsp70 interaction reveal the mechanism for nucleotide exchange activity. Proceedings of the National Academy of Sciences of the United States of America, 105, 16519–16524.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Andreasson, C., Fiaux, J., Rampelt, H., Mayer, M. P., & Bukau, B. (2008b). Hsp110 is a nucleotide-activated exchange factor for Hsp70. The Journal of Biological Chemistry, 283, 8877–8884.PubMedCrossRefGoogle Scholar
  10. Finka, A., Sharma, S. K., & Goloubinoff, P. (2015). Multi-layered molecular mechanisms of polypeptide holding, unfolding and disaggregation by HSP70/HSP110 chaperones. Frontiers in Molecular Biosciences, 2, 29.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Balch, W. E., Morimoto, R. I., Dillin, A., & Kelly, J. W. (2008). Adapting proteostasis for disease intervention. Science (New York, N.Y.), 319, 916–919.CrossRefGoogle Scholar
  12. Barends, T. R. M., Werbeck, N. D., & Reinstein, J. (2010). Disaggregases in 4 dimensions. Current Opinion in Structural Biology, 20, 46–53.PubMedCrossRefGoogle Scholar
  13. Beinker, P., Schlee, S., Groemping, Y., Seidel, R., & Reinstein, J. (2002). The N terminus of ClpB from Thermus thermophilus is not essential for the chaperone activity. The Journal of Biological Chemistry, 277, 47160–47166.PubMedCrossRefGoogle Scholar
  14. Bhandari, V., & Houry, W. A. (2015). Substrate interaction networks of the Escherichia coli chaperones: Trigger factor, DnaK and GroEL. Advances in Experimental Medicine and Biology, 883, 271–294.PubMedCrossRefGoogle Scholar
  15. Borges, J. C., Fischer, H., Craievich, A. F., & Ramos, C. H. I. (2005). Low resolution structural study of two human HSP40 chaperones in solution. DJA1 from subfamily a and DJB4 from subfamily B have different quaternary structures. The Journal of Biological Chemistry, 280, 13671–13681.PubMedCrossRefGoogle Scholar
  16. Borges, J. C., & Ramos, C. H. I. (2005). Protein folding assisted by chaperones. Protein and Peptide Letters, 12, 257–261.PubMedCrossRefGoogle Scholar
  17. Borges, J. C., & Ramos, C. H. I. (2006). Spectroscopic and thermodynamic measurements of nucleotide-induced changes in the human 70-kDa heat shock cognate protein. Archives of Biochemistry and Biophysics, 452, 46–54.PubMedCrossRefGoogle Scholar
  18. Calamini, B., & Morimoto, R. I. (2012). Protein homeostasis as a therapeutic target for diseases of protein conformation. Current Topics in Medicinal Chemistry, 12, 2623–2640.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Carroni, M., Kummer, E., Oguchi, Y., Wendler, P., Clare, D. K., Sinning, I., Kopp, J., Mogk, A., Bukau, B., & Saibil, H. R. (2014). Head-to-tail interactions of the coiled-coil domains regulate ClpB activity and cooperation with Hsp70 in protein disaggregation. eLife, 3, e02481.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Castellano, L. M., & Shorter, J. (2012). The surprising role of amyloid fibrils in HIV infection. Biology, 1, 58–80.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chaudhuri, T. K., & Paul, S. (2006). Protein-misfolding diseases and chaperone-based therapeutic approaches. The FEBS Journal, 273, 1331–1349.PubMedCrossRefGoogle Scholar
  22. Cheetham, M. E., & Caplan, A. J. (1998). Structure, function and evolution of DnaJ: Conservation and adaptation of chaperone function. Cell Stress & Chaperones, 3, 28–36.CrossRefGoogle Scholar
  23. Cheng, S. H., Gregory, R. J., Marshall, J., Paul, S., Souza, D. W., White, G. A., O’Riordan, C. R., & Smith, A. E. (1990). Defective intracellular transport and processing of CFTR is the molecular basis of most cystic fibrosis. Cell, 63, 827–834.PubMedCrossRefGoogle Scholar
  24. Chiti, F., & Dobson, C. M. (2006). Protein misfolding, functional amyloid, and human disease. Annual Review of Biochemistry, 75, 333–366.PubMedCrossRefGoogle Scholar
  25. Chiti, F., & Dobson, C. M. (2017). Protein Misfolding, amyloid formation, and human disease: A summary of progress over the last decade. Annual Review of Biochemistry, 86, 27–68.PubMedCrossRefGoogle Scholar
  26. Clerico, E. M., Tilitsky, J. M., Meng, W., & Gierasch, L. M. (2015). How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. Journal of Molecular Biology, 427, 1575–1588.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Collier, T. J., Srivastava, K. R., Justman, C., Grammatopoulous, T., Hutter-Paier, B., Prokesch, M., Havas, D., Rochet, J. C., Lui, F., Jock, K., de Oliveira, P., Stirtz, G. L., Dettermer, U., Sortweel, C. E., Feany, M. B., Lansbury, P., Lapidus, L., & Paumier, K. L. (2017). Nortriptyline inhibits aggregation and neurotoxicity of alpha-synuclein by enhancing reconfiguration of the monomeric form. Neurobiology of Disease, 106, 191–204.PubMedCrossRefGoogle Scholar
  28. Cuanalo-Contreras, K., Mukherjee, A., & Soto, C. (2013). Role of protein misfolding and proteostasis deficiency in protein misfolding diseases and aging. International Journal of Cell Biology, 2013, 638083.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cyr, D. M., Langer, T., & Douglas, M. G. (1994). DnaJ-like proteins: Molecular chaperones and specific regulators of Hsp70. Trends in Biochemical Sciences, 19, 176–181.PubMedCrossRefGoogle Scholar
  30. Cyr, D. M., & Ramos, C. H. I. (2015). Specification of Hsp70 function by Type I and Type II Hsp40. In G. Blatch & A. L. Edkins (Eds.), The networking of chaperones by co-chaperones, subcellular biochemistry (Vol. 78, pp. 91–102). Cham: Springer International Publishing.Google Scholar
  31. da Silva, K. P., & Borges, J. C. (2011). The molecular chaperone Hsp70 family members function by a bidirectional heterotrophic allosteric mechanism. Protein and Peptide Letters, 18, 132–142.PubMedCrossRefGoogle Scholar
  32. De Felice, F. G., Lourenco, M. V., & Ferreira, S. T. (2014). How does brain insulin resistance develop in Alzheimer’s disease? Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 10, S26–S32.CrossRefGoogle Scholar
  33. De Maio, A. (2014). Extracellular Hsp70: Export and function. Current Protein & Peptide Science, 15, 225–231.CrossRefGoogle Scholar
  34. Deane, C. A. S., & Brown, I. R. (2017). Differential targeting of Hsp70 heat shock proteins HSPA6 and HSPA1A with components of a protein disaggregation/refolding machine in differentiated human neuronal cells following thermal stress. Frontiers in Neuroscience, 11, 227.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Dekker, S. L., Kampinga, H. H., & Bergink, S. (2015). DNAJs: More than substrate delivery to HSPA. Frontiers in Molecular Biosciences, 2(35).Google Scholar
  36. DeSantis, M. E., Leung, E. H., Sweeny, E. A., Jackrel, M. E., Cushman-Nick, M., Neuhaus-Follini, A., Vashist, S., Sochor, M. A., Knight, M. N., & Shorter, J. (2012). Operational plasticity enables hsp104 to disaggregate diverse amyloid and nonamyloid clients. Cell, 151, 778–793.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Desantis, M. E., & Shorter, J. (2012). The elusive middle domain of Hsp104 and ClpB: Location and function. Biochimica et Biophysica Acta, 1823, 29–39.PubMedCrossRefGoogle Scholar
  38. Douglas, P. M., & Dillin, A. (2010). Protein homeostasis and aging in neurodegeneration. The Journal of Cell Biology, 190, 719–729.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Doyle, S. M., Genest, O., & Wickner, S. (2013). Protein rescue from aggregates by powerful molecular chaperone machines. Nature Reviews Molecular Cell Biology, 14, 617–629.PubMedCrossRefGoogle Scholar
  40. Doyle, S. M., Hoskins, J. R., & Wickner, S. (2007). Collaboration between the ClpB AAA+ remodeling protein and the DnaK chaperone system. Proceedings of the National Academy of Sciences of the United States of America, 104, 11138–11144.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Dragovic, Z., Broadley, S. A., Shomura, Y., Bracher, A., & Hartl, F. U. (2006). Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s. The EMBO Journal, 25, 2519–2528.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Dubnikov, T., Ben-Gedalya, T., & Cohen, E. (2017). Protein quality control in health and disease. Cold Spring Harbor Perspectives in Biology, 2017(9), a023523.CrossRefGoogle Scholar
  43. Duennwald, M. L., Echeverria, A., & Shorter, J. (2012). Small heat shock proteins potentiate amyloid dissolution by protein disaggregases from yeast and humans. PLoS Biology, 10, e1001346.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Duncan, E. J., Cheetham, M. E., Chapple, J. P., & van der Spuy, J. (2015). The role of HSP70 and its co-chaperones in protein misfolding, aggregation and disease. Sub-Cellular Biochemistry, 78, 243–273.PubMedCrossRefGoogle Scholar
  45. Ebrahimi-Fakhari, D., Wahlster, L., & McLean, P. J. (2012). Protein degradation pathways in Parkinson’s disease – Curse or blessing. Acta Neuropathologica, 124, 153–172.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Erzberger, J. P., & Berger, J. M. (2006). Evolutionary relationships and structural mechanisms of AAA+ proteins. Annual Review of Biophysics and Biomolecular Structure, 35, 93–114.PubMedCrossRefGoogle Scholar
  47. Fan, J. Q., & Ishii, S. (2007). Active-site-specific chaperone therapy for Fabry disease. Yin and Yang of enzyme inhibitors. FEBS Journal, 274, 4962–4971.PubMedCrossRefGoogle Scholar
  48. Foguel, D., & Silva, J. L. (2004). New insights into the mechanisms of protein misfolding and aggregation in amyloidogenic diseases derived from pressure studies. Biochemistry, 43, 11361–11370.PubMedCrossRefGoogle Scholar
  49. Gao, X., Carroni, M., Nussbaum-Krammer, C., Mogk, A., Nillegoda, N. B., Szlachcic, A., Guilbride, D. L., Saibil, H. R., Mayer, M. P., & Bukau, B. (2015). Human Hsp70 Disaggregase reverses Parkinson’s-linked alpha-Synuclein amyloid fibrils. Molecular Cell, 59, 781–793.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Gates, S. N., Yokom, A. L., Lin, J., Jackrel, M. E., Rizo, A. N., Kendsersky, N. M., Buell, C. E., Sweeny, E. A., Mack, K. L., Chuang, E., Torrente, M. P., Su, M., Shorter, J., & Southworth, D. R. (2017). Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Science (New York, NY), 357, 273–279.CrossRefGoogle Scholar
  51. Glover, J. R., & Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell, 94, 73–82.PubMedCrossRefGoogle Scholar
  52. Goeckeler, J. L., Petruso, A. P., Aguirre, J., Clement, C. C., Chiosis, G., & Brodsky, J. L. (2008). The yeast Hsp110, Sse1p, exhibits high-affinity peptide binding. FEBS Letters, 582, 2393–2396.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Goloubinoff, P. (2016). Mechanisms of protein homeostasis in health, aging and disease. Swiss Medical Weekly, 146, w14306.PubMedGoogle Scholar
  54. Goloubinoff, P., Mogk, A., Zvi, A. P., Tomoyasu, T., & Bukau, B. (1999). Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proceedings of the National Academy of Sciences of the United States of America, 96, 13732–13737.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gonçalves, C. C., & Ramos, C. H. I. (2016). Molecular Chaperones and HSPs in Sugarcane and Eucalyptus. In A. Asea, P. Kaur, & S. Calderwood (Eds.), Heat Shock Proteins and Plants (Vol. 10, pp. 245–283). Cham: Springer International Publishing.CrossRefGoogle Scholar
  56. Hardy, J., & Selkoe, D. J. (2002). The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science (New York, N.Y.), 297, 353–356.CrossRefGoogle Scholar
  57. Hinault, M. P., Cuendet, A. F., Mattoo, R. U., Mensi, M., Dietler, G., Lashuel, H. A., & Goloubinoff, P. (2010). Stable alpha-synuclein oligomers strongly inhibit chaperone activity of the Hsp70 system by weak interactions with J-domain co-chaperones. The Journal of Biological Chemistry, 285, 38173–38182.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hipp, M. S., Park, S. H., & Hartl, F. U. (2014). Proteostasis impairment in protein-misfolding and -aggregation diseases. Trends in Cell Biology, 24, 506–514.PubMedCrossRefGoogle Scholar
  59. Holmes, W. M., Klaips, C. L., & Serio, T. R. (2014). Defining the limits: Protein aggregation and toxicity in vivo. Critical Reviews in Biochemistry and Molecular Biology, 49, 294–303.PubMedPubMedCentralCrossRefGoogle Scholar
  60. Hoogstra-Berends, F., Meijering, R. A., Zhang, D., Heeres, A., Loen, L., Seerden, J. P., Kuipers, I., Kampinga, H. H., Henning, R. H., & Brundel, B. J. (2012). Heat shock protein-inducing compounds as therapeutics to restore proteostasis in atrial fibrillation. Trends in Cardiovascular Medicine, 22, 62–68.PubMedCrossRefGoogle Scholar
  61. Jackrel, M. E., DeSantis, M. E., Martinez, B. A., Castellano, L. M., Stewart, R. M., Caldwell, K. A., Caldwell, G. A., & Shorter, J. (2014). Potentiated Hsp104 variants antagonize diverse proteotoxic misfolding events. Cell, 156, 170–182.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Jeng, W., Lee, S., Sung, N., Lee, J., & Tsai, F. T. (2015). Molecular chaperones: Guardians of the proteome in normal and disease states. F1000Research, 4, 1448.Google Scholar
  63. Johnson, S. M., Connelly, S., Fearns, C., Powers, E. T., & Kelly, J. W. (2012). The transthyretin amyloidoses: From delineating the molecular mechanism of aggregation linked to pathology to a regulatory-agency-approved drug. Journal of Molecular Biology, 421, 185–203.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Kaushik, S., & Cuervo, A. M. (2015). Proteostasis and aging. Nature Medicine, 21, 1406–1415.PubMedCrossRefGoogle Scholar
  65. Knowles, T. P., Vendruscolo, M., & Dobson, C. M. (2014). The amyloid state and its association with protein misfolding diseases. Nature Reviews Molecular Cell Biology, 15, 384–396.PubMedCrossRefGoogle Scholar
  66. Labbadia, J., & Morimoto, R. I. (2015). The biology of proteostasis in aging and disease. Annual Review of Biochemistry, 84, 435–464.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lee, J., Kim, J. H., Biter, A. B., Sielaff, B., Lee, S., & Tsai, F. T. (2013). Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor. Proceedings of the National Academy of Sciences of the United States of America, 110, 8513–8518.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lee, S., Sowa, M. E., Watanabe, Y. H., Sigler, P. B., Chiu, W., Yoshida, M., & Tsai, F. T. (2003). The structure of ClpB: A molecular chaperone that rescues proteins from an aggregated state. Cell, 115, 229–240.PubMedCrossRefGoogle Scholar
  69. Li, J., Wu, Y., Qian, X., & Sha, B. (2006). Crystal structure of yeast Sis1 peptide-binding fragment and Hsp70 Ssa1 C-terminal complex. The Biochemical Journal, 398, 353–360.PubMedPubMedCentralCrossRefGoogle Scholar
  70. Li, X., Shao, H., Taylor, I. R., & Gestwicki, J. E. (2016). Targeting allosteric control mechanisms in heat shock protein 70 (Hsp70). Current Topics in Medicinal Chemistry, 16, 2729–2740.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Lo Bianco, C., Shorter, J., Regulier, E., Lashuel, H., Iwatsubo, T., Lindquist, S., & Aebischer, P. (2008). Hsp104 antagonizes alpha-synuclein aggregation and reduces dopaminergic degeneration in a rat model of Parkinson disease. The Journal of Clinical Investigation, 118, 3087–3097.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lv, T., Li, X., Zhang, W., Zhao, X., Ou, X., & Huang, J. (2016). Recent advance in the molecular genetics of Wilson disease and hereditary hemochromatosis. European Journal of Medical Genetics, 59, 532–539.PubMedCrossRefGoogle Scholar
  73. Macario, A. J., & Conway de Macario, E. (2000). Stress and molecular chaperones in disease. International Journal of Clinical & Laboratory Research, 30, 49–66.CrossRefGoogle Scholar
  74. Mack, K. L., & Shorter, J. (2016). Engineering and evolution of molecular chaperones and protein Disaggregases with enhanced activity. Frontiers in Molecular Biosciences, 3, 8.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mackay, R. G., Helsen, C. W., Tkach, J. M., & Glover, J. R. (2008). The C-terminal extension of Saccharomyces Cerevisiae Hsp104 plays a role in oligomer assembly. Biochemistry, 47, 1918–1927.PubMedCrossRefGoogle Scholar
  76. Mattoo, R. U., Sharma, S. K., Priya, S., Finka, A., & Goloubinoff, P. (2013). Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. The Journal of Biological Chemistry, 288, 21399–21411.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mayer, M. P. (2010). Gymnastics of molecular chaperones. Molecular Cell, 39, 321–331.PubMedCrossRefGoogle Scholar
  78. Mayer, M. P. (2013). Hsp70 chaperone dynamics and molecular mechanism. Trends in Biochemical Sciences, 38, 507–514.PubMedCrossRefGoogle Scholar
  79. Mayer, M. P., & Bukau, B. (2005). Hsp70 chaperones: Cellular functions and molecular mechanism. Cellular and Molecular Life Sciences: CMLS, 62, 670–684.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Mayer, M. P., & Kityk, R. (2015). Insights into the molecular mechanism of allostery in Hsp70s. Frontiers in Molecular Biosciences, 2, 58.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Miot, M., Reidy, M., Doyle, S. M., Hoskins, J. R., Johnston, D. M., Genest, O., Vitery, M. C., Masison, D. C., & Wickner, S. (2011). Species-specific collaboration of heat shock proteins (Hsp) 70 and 100 in thermotolerance and protein disaggregation. Proceedings of the National Academy of Sciences of the United States of America, 108, 6915–6920.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Mogk, A., Deuerling, E., Vorderwulbecke, S., Vierling, E., & Bukau, B. (2003a). Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Molecular Microbiology, 50, 585–595.PubMedCrossRefGoogle Scholar
  83. Mogk, A., Kummer, E., & Bukau, B. (2015). Cooperation of Hsp70 and Hsp100 chaperone machines in protein disaggregation. Frontiers in Molecular Biosciences, 2, 22.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mogk, A., Schlieker, C., Strub, C., Rist, W., Weibezahn, J., & Bukau, B. (2003b). Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. The Journal of Biological Chemistry, 278, 17615–17624.PubMedCrossRefGoogle Scholar
  85. Mogk, A., Tomoyasu, T., Goloubinoff, P., Rudiger, S., Roder, D., Langen, H., & Bukau, B. (1999). Identification of thermolabile Escherichia coli proteins: Prevention and reversion of aggregation by DnaK and ClpB. The EMBO Journal, 18, 6934–6949.PubMedPubMedCentralCrossRefGoogle Scholar
  86. Mokry, D. Z., Abrahao, J., & Ramos, C. H. (2015). Disaggregases, molecular chaperones that resolubilize protein aggregates. Anais da Academia Brasileira de Ciências, 87, 1273–1292.PubMedCrossRefGoogle Scholar
  87. Muchowski, P. J., & Wacker, J. L. (2005). Modulation of neurodegeneration by molecular chaperones. Nature Reviews Neuroscience, 6, 11–22.PubMedCrossRefGoogle Scholar
  88. Munro, S., & Pelham, H. R. (1987). A C-terminal signal prevents secretion of luminal ER proteins. Cell, 48, 899–907.PubMedCrossRefGoogle Scholar
  89. Nillegoda, N. B., & Bukau, B. (2015). Metazoan Hsp70-based protein disaggregases: Emergence and mechanisms. Frontiers in Molecular Biosciences, 2, 57.PubMedPubMedCentralCrossRefGoogle Scholar
  90. Nillegoda, N. B., Kirstein, J., Szlachcic, A., Berynskyy, M., Stank, A., Stengel, F., Arnsburg, K., Gao, X., Scior, A., Aebersold, R., Guilbride, D. L., Wade, R. C., Morimoto, R. I., Mayer, M. P., & Bukau, B. (2015). Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature, 524, 247–251.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Nyquist, K., & Martin, A. (2014). Marching to the beat of the ring: Polypeptide translocation by AAA+ proteases. Trends in Biochemical Sciences, 39, 53–60.PubMedCrossRefGoogle Scholar
  92. Oguchi, Y., Kummer, E., Seyffer, F., Berynskyy, M., Anstett, B., Zahn, R., Wade, R. C., Mogk, A., & Bukau, B. (2012). A tightly regulated molecular toggle controls AAA+ disaggregase. Nature Structural & Molecular Biology, 19, 1338–1346.CrossRefGoogle Scholar
  93. Oh, H. J., Chen, X., & Subjeck, J. R. (1997). Hsp110 protects heat-denatured proteins and confers cellular thermoresistance. The Journal of Biological Chemistry, 272, 31636–31640.PubMedCrossRefGoogle Scholar
  94. Oh, H. J., Easton, D., Murawski, M., Kaneko, Y., & Subjeck, J. R. (1999). The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions. The Journal of Biological Chemistry, 274, 15712–15718.PubMedCrossRefGoogle Scholar
  95. Olivares, A. O., Baker, T. A., & Sauer, R. T. (2016). Mechanistic insights into bacterial AAA+ proteases and protein-remodelling machines. Nature Reviews Microbiology, 14, 33–44.PubMedCrossRefGoogle Scholar
  96. Olshansky, S. J., Passaro, D. J., Hershow, R. C., Layden, J., Carnes, B. A., Brody, J., Hayflick, L., Butler, R. N., Allison, B. D., & Ludwing, D. S. (2005). A potential decline in life expectancy in the United States in the 21st century. The New England Journal of Medicine, 352, 1138–1145.PubMedCrossRefGoogle Scholar
  97. Olzscha, H., Schermann, S. M., Woerner, A. C., Pinkert, S., Hecht, M. H., Tartaglia, G. G., Vendruscolo, M., Hayer-Hartl, M., Hartl, F. U., & Vabulas, R. M. (2011). Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell, 144, 67–78.PubMedCrossRefGoogle Scholar
  98. Pockley, A. G., Henderson, B., & Multhoff, G. (2014). Extracellular cell stress proteins as biomarkers of human disease. Biochemical Society Transactions, 42, 1744–1751.PubMedCrossRefGoogle Scholar
  99. Prahlad, V., & Morimoto, R. I. (2009). Integrating the stress response: Lessons for neurodegenerative diseases from C. elegans. Trends in Cell Biology, 19, 52–61.PubMedCrossRefGoogle Scholar
  100. Przyborski, J. M., Diehl, M., & Blatch, G. L. (2015). Plasmodial HSP70s are functionally adapted to the malaria parasite life cycle. Frontiers in Molecular Biosciences, 2, 34.PubMedPubMedCentralCrossRefGoogle Scholar
  101. Qiu, X. B., Shao, Y. M., Miao, S., & Wang, L. (2006). The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cellular and Molecular Life Sciences: CMLS, 63, 2560–2570.PubMedCrossRefGoogle Scholar
  102. Quinlan, R. A., Brenner, M., Goldman, J. E., & Messing, A. (2007). GFAP and its role in Alexander disease. Experimental Cell Research, 313, 2077–2087.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Radons, J. (2016). The human HSP70 family of chaperones: Where do we stand? Cell Stress & Chaperones, 21, 379–404.CrossRefGoogle Scholar
  104. Ramos, C. H., & Ferreira, S. T. (2005). Protein folding, misfolding and aggregation: Evolving concepts and conformational diseases. Protein and Peptide Letters, 12, 213–222.PubMedCrossRefGoogle Scholar
  105. Rampelt, H., Kirstein-Miles, J., Nillegoda, N. B., Chi, K., Scholz, S. R., Morimoto, R. I., & Bukau, B. (2012). Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. The EMBO Journal, 31, 4221–4235.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Raviol, H., Bukau, B., & Mayer, M. P. (2006a). Human and yeast Hsp110 chaperones exhibit functional differences. FEBS Letters, 580, 168–174.PubMedCrossRefGoogle Scholar
  107. Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M. P., & Bukau, B. (2006b). Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. The EMBO Journal, 25, 2510–2518.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rinaldi, C., & Fischbeck, K. H. (2015). Pathological mechanisms of Polyglutamine diseases. Nature Education, 8, 5.Google Scholar
  109. Rosenzweig, R., Moradi, S., Zarrine-Afsar, A., Glover, J. R., & Kay, L. E. (2013). Unraveling the mechanism of protein disaggregation through a ClpB-DnaK interaction. Science (New York, N.Y.), 339, 1080–1083.CrossRefGoogle Scholar
  110. Sarbeng, E. B., Liu, Q., Tian, X., Yang, J., Li, H., Wong, J. L., Zhou, L., & Liu, Q. (2015). A functional DnaK dimer is essential for the efficient interaction with Hsp40 heat shock protein. The Journal of Biological Chemistry, 290, 8849–8862.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Satyal, S. H., Schmidt, E., Kitagawa, K., Sondheimer, N., Lindquist, S., Kramer, J. M., & Morimoto, R. I. (2000). Polyglutamine aggregates alter protein folding homeostasis in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 97, 5750–5755.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Schirmer, E. C., Glover, J. R., Singer, M. A., & Lindquist, S. (1996). HSP100/Clp proteins: A common mechanism explains diverse functions. Trends in Biochemical Sciences, 21, 289–296.PubMedCrossRefGoogle Scholar
  113. Schlee, S., Beinker, P., Akhrymuk, A., & Reinstein, J. (2004). A chaperone network for the resolubilization of protein aggregates: Direct interaction of ClpB and DnaK. Journal of Molecular Biology, 336, 275–285.PubMedCrossRefGoogle Scholar
  114. Schlieker, C., Tews, I., Bukau, B., & Mogk, A. (2004). Solubilization of aggregated proteins by ClpB/DnaK relies on the continuous extraction of unfolded polypeptides. FEBS Letters, 578, 351–356.PubMedCrossRefGoogle Scholar
  115. Schuermann, J. P., Jiang, J., Cuellar, J., Llorca, O., Wang, L., Gimenez, L. E., Jin, S., Taylor, A. B., Demeler, B., Morano, K. A., Hart, P. J., Valpuesta, J. M., Lafer, E. M., & Sousa, R. (2008). Structure of the Hsp110: Hsc70 nucleotide exchange machine. Molecular Cell, 31, 232–243.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Shorter, J. (2011). The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One, 6, e26319.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Shorter, J. (2017). Designer protein disaggregases to counter neurodegenerative disease. Current Opinion in Genetics & Development, 44, 1–8.CrossRefGoogle Scholar
  118. Shorter, J., & Lindquist, S. (2004). Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science (New York, NY), 304, 1793–1797.CrossRefGoogle Scholar
  119. Shorter, J., & Lindquist, S. (2006). Destruction or potentiation of different prions catalyzed by similar Hsp104 remodeling activities. Molecular Cell, 23, 425–438.PubMedPubMedCentralCrossRefGoogle Scholar
  120. Shorter, J., & Lindquist, S. (2008). Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. The EMBO Journal, 27, 2712–2724.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Shrestha, L., & Young, J. (2016). Function and Chemotypes of human Hsp70 chaperones. Current Topics in Medicinal Chemistry, 16, 2812–2828.PubMedCrossRefGoogle Scholar
  122. Sielaff, B., & Tsai, F. T. (2010). The M-domain controls Hsp104 protein remodeling activity in an Hsp70/Hsp40-dependent manner. Journal of Molecular Biology, 402, 30–37.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Silva, J. L., De Moura Gallo, C. V., Costa, D. C., & Rangel, L. P. (2014). Prion-like aggregation of mutant p53 in cancer. Trends in Biochemical Sciences, 39, 260–267.PubMedCrossRefGoogle Scholar
  124. Silverman, G. A., Pak, S. C., & Perlmutter, D. H. (2013). Disorders of protein misfolding: Alpha-1-antitrypsin deficiency as prototype. The Journal of Pediatrics, 163, 320–326.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Snider, J., & Houry, W. A. (2008). AAA+ proteins: Diversity in function, similarity in structure. Biochemical Society Transactions, 36, 72–77.PubMedCrossRefGoogle Scholar
  126. Sousa, R. (2014). Structural mechanisms of chaperone mediated protein disaggregation. Frontiers in Molecular Biosciences, 1, 12.PubMedPubMedCentralCrossRefGoogle Scholar
  127. Srivastava, P. K. (2005). Immunotherapy for human cancer using heat shock protein-peptide complexes. Current Oncology Reports, 7, 104–108.PubMedCrossRefGoogle Scholar
  128. Stewart, K. L., & Radford, S. E. (2017). Amyloid plaques beyond αβ: A survey of the diverse modulators of amyloid aggregation. Biophysical Reviews, 4, 405–419.CrossRefGoogle Scholar
  129. Summers, D. W., Douglas, P. M., Ramos, C. H., & Cyr, D. M. (2009). Polypeptide transfer from Hsp40 to Hsp70 molecular chaperones. Trends in Biochemical Sciences, 34, 230–233.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Sweeny, E. A., & Shorter, J. (2016). Mechanistic and structural insights into the Prion-Disaggregase activity of Hsp104. Journal of Molecular Biology, 428, 1870–1885.PubMedCrossRefGoogle Scholar
  131. Takahashi, T., Katada, S., & Onodera, O. (2010). Polyglutamine diseases: Where does toxicity come from? What is toxicity? Where are we going? Journal of Molecular Cell Biology, 2, 180–191.PubMedCrossRefGoogle Scholar
  132. Tamarappoo, B. K., Yang, B., & Verkman, A. S. (1999). Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. The Journal of Biological Chemistry, 274, 34825–34831.PubMedCrossRefGoogle Scholar
  133. Tiroli-Cepeda, A. O., & Ramos, C. H. (2011). An overview of the role of molecular chaperones in protein homeostasis. Protein and Peptide Letters, 18, 101–109.PubMedCrossRefGoogle Scholar
  134. Torrente, M. P., & Shorter, J. (2013). The metazoan protein disaggregase and amyloid depolymerase system: Hsp110, Hsp70, Hsp40, and small heat shock proteins. Prion, 7, 457–463.PubMedCrossRefGoogle Scholar
  135. Tytell, M. (2005). Release of heat shock proteins (Hsps) and the effects of extracellular Hsps on neural cells and tissues. International Journal of Hyperthermia: the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group, 21, 445–455.CrossRefGoogle Scholar
  136. Valastyan, J. S., & Lindquist, S. (2014). Mechanisms of protein-folding diseases at a glance. Disease Models & Mechanisms, 7, 9–14.CrossRefGoogle Scholar
  137. Vashist, S., Cushman, M., & Shorter, J. (2010). Applying Hsp104 to protein-misfolding disorders. Biochemistry and Cell Biology = Biochimie et biologie cellulaire, 88, 1–13.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Vicente Miranda, H., & Outeiro, T. F. (2010). The sour side of neurodegenerative disorders: The effects of protein glycation. The Journal of Pathology, 221, 13–25.PubMedCrossRefGoogle Scholar
  139. Wallace, E. W., Kear-Scott, J. L., Pilipenko, E. V., Schwartz, M. H., Laskowski, P. R., Rojek, A. E., Katanski, C. D., Riback, J. A., Dion, M. F., Franks, A. M., Airoldi, E. M., Pan, T., Budnik, B. A., & Drummond, D. A. (2015). Reversible, specific, active aggregates of endogenous proteins assemble upon heat stress. Cell, 162, 1286–1298.PubMedPubMedCentralCrossRefGoogle Scholar
  140. Walsh, P., Bursac, D., Law, Y. C., Cyr, D., & Lithgow, T. (2004). The J-protein family: Modulating protein assembly, disassembly and translocation. EMBO Reports, 5, 567–571.PubMedPubMedCentralCrossRefGoogle Scholar
  141. Warrick, J. M., Chan, H. Y., Gray-Board, G. L., Chai, Y., Paulson, H. L., & Bonini, N. M. (1999). Suppression of polyglutamine-mediated neurodegeneration in drosophila by the molecular chaperone HSP70. Nature Genetics, 23, 425–428.PubMedCrossRefGoogle Scholar
  142. Weibezahn, J., Tessarz, P., Schlieker, C., Zahn, R., Maglica, Z., Lee, S., Zentgraf, H., Weber-Ban, E. U., Dougan, D. A., Tsai, F. T., Mogk, A., & Bukau, B. (2004). Thermotolerance requires refolding of aggregated proteins by substrate translocation through the central pore of ClpB. Cell, 119, 653–665.PubMedCrossRefGoogle Scholar
  143. Winkler, J., Tyedmers, J., Bukau, B., & Mogk, A. (2012). Chaperone networks in protein disaggregation and prion propagation. Journal of Structural Biology, 179, 152–160.PubMedCrossRefGoogle Scholar
  144. Wolfe, K. J., & Cyr, D. M. (2011). Amyloid in neurodegenerative diseases: Friend or foe? Seminars in Cell & Developmental Biology, 22, 476–481.CrossRefGoogle Scholar
  145. Yedidi, R. S., Wendler, P., & Enenkel, C. (2017). AAA-ATPases in protein degradation. Frontiers in Molecular Biosciences, 4, 42.PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yokom, A. L., Gates, S. N., Jackrel, M. E., Mack, K. L., Su, M., Shorter, J., & Southworth, D. R. (2016). Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation. Nature Structural & Molecular Biology, 23, 830–837.CrossRefGoogle Scholar
  147. Young, J. C. (2010). Mechanisms of the Hsp70 chaperone system. Biochemistry and Cell Biology = Biochimie et biologie cellulaire, 88, 291–300.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Young, J. C. (2014). The role of the cytosolic HSP70 chaperone system in diseases caused by misfolding and aberrant trafficking of ion channels. Disease Models & Mechanisms, 7, 319–329.CrossRefGoogle Scholar
  149. Zietkiewicz, S., Krzewska, J., & Liberek, K. (2004). Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. The Journal of Biological Chemistry, 279, 44376–44383.PubMedCrossRefGoogle Scholar
  150. Zietkiewicz, S., Lewandowska, A., Stocki, P., & Liberek, K. (2006). Hsp70 chaperone machine remodels protein aggregates at the initial step of Hsp70-Hsp100-dependent disaggregation. The Journal of Biological Chemistry, 281, 7022–7029.PubMedCrossRefGoogle Scholar
  151. Zolkiewski, M. (2006). A camel passes through the eye of a needle: Protein unfolding activity of Clp ATPases. Molecular Microbiology, 61, 1094–1100.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Zolkiewski, M., Zhang, T., & Nagy, M. (2012). Aggregate reactivation mediated by the Hsp100 chaperones. Archives of Biochemistry and Biophysics, 520, 1–6.PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zuiderweg, E. R., Bertelsen, E. B., Rousaki, A., Mayer, M. P., Gestwicki, J. E., & Ahmad, A. (2013). Allostery in the Hsp70 chaperone proteins. Topics in Current Chemistry, 328, 99–153.PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zuiderweg, E. R., Hightower, L. E., & Gestwicki, J. E. (2017). The remarkable multivalency of the Hsp70 chaperones. Cell Stress & Chaperones, 22, 173–189.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Maria Luiza Caldas Nogueira
    • 1
  • Juliana Crotti Franco
    • 1
  • Gabriela de Mello Gandelini
    • 1
  • Carlos Henrique Inacio Ramos
    • 1
  1. 1.Department of Organic Chemistry, Institute of ChemistryUniversity of Campinas – UNICAMPCampinasBrazil

Personalised recommendations