Regulation of Mammalian HSP70 Expression and Stress Response

  • Kamalakshi Deka
  • Sougata SahaEmail author
Part of the Heat Shock Proteins book series (HESP, volume 13)


Abnormal environmental and physiological conditions can damage protein structures creating a toxic state in the cell due to loss of protein function and homeostasis. In many disease conditions the effect is so profound that interaction of structurally damaged proteins and aggregates with cellular macromolecules leads to cell and tissue damage as observed in protein misfolding related neurodegenerative disorders like Alzheimer’s, Parkinson’s and others. Thus structurally damaged proteins bring an organizational and functional challenge for the cells and tissue which need to be resolved very quickly and efficiently to prevent cell and tissue damage. One of the ways cell senses and mounts protective response to proteotoxic stress is by heat shock response (HSR) which constitutes high expression of chaperone proteins also called heat shock proteins (HSP) to tackle sudden increased demand for chaperones in a cell. HSR induces HSP70, one of the major chaperones, which protect cells from proteotoxic stress by prevention of misfolding and aggregation of polypeptides. Thus, a rapid and potent stress response depends on quick supply of large amount of HSP70 proteins. This extraordinary demand of HSP70 proteins is satisfied by an efficient gene expression programme which regulates HSP70 expression at every step from chromatin modification during transcriptional activation to stability of translated protein molecules. Stress dependent regulation of mammalian HSP70 expression is focus of this chapter and regulation at each of these steps will be discussed in detail.


Heat shock proteins HSF1 HSP70 Regulation of HSP70 expression Stress response 



Authors thank funding agencies for research supports and fellowships. Research in laboratory of SS is supported by SERB-India (EEQ/2016/000772, and EMR/2016/004001). KD is supported by fellowship from SERB, India (EEQ/2016/000772). Department of MBBT, TU is supported by UGC-SAP, DST FIST, DBT Strengthening, DBT Hub, and DBT-BIF.


  1. Acquaviva, J., He, S., Sang, J., et al. (2014). mTOR inhibition potentiates HSP90 inhibitor activity via cessation of HSP synthesis. Molecular Cancer Research, 12, 703–713.PubMedCrossRefGoogle Scholar
  2. Agoff, S. N., Hou, J., Linzer, D., & Wu, B. (1993). Regulation of the human hsp70 promoter by p53. Science, 259, 84–87.PubMedCrossRefGoogle Scholar
  3. Ahn, S.-G., & Thiele, D. J. (2003). Redox regulation of mammalian heat shock factor 1 is essential for Hsp gene activation and protection from stress. Genes & Development, 17, 516–528.CrossRefGoogle Scholar
  4. Åkerfelt, M., Morimoto, R. I., & Sistonen, L. (2010). Heat shock factors: Integrators of cell stress, development and lifespan. Nature Reviews Molecular Cell Biology, 11, 545.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alberti, S., Böhse, K., Arndt, V., Schmitz, A., & Höhfeld, J. (2004). The cochaperone HspBP1 inhibits the CHIP ubiquitin ligase and stimulates the maturation of the cystic fibrosis transmembrane conductance regulator. Molecular Biology of the Cell, 15, 4003–4010.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Amadio, M., Scapagnini, G., Lupo, G., Drago, F., Govoni, S., & Pascale, A. (2008). PKCβII/HuR/VEGF: A new molecular cascade in retinal pericytes for the regulation of VEGF gene expression. Pharmacological Research, 57, 60–66.PubMedCrossRefGoogle Scholar
  7. Amin, J., Ananthan, J., & Voellmy, R. (1988). Key features of heat shock regulatory elements. Molecular and Cellular Biology, 8, 3761–3769.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Anckar, J., & Sistonen, L. (2007). Heat shock factor 1 as a coordinator of stress and developmental pathways (pp. 78–88). NY: Molecular Aspects of the Stress Response: Chaperones, Membranes and Networks.Google Scholar
  9. Arndt, V., Daniel, C., Nastainczyk, W., Alberti, S., & Höhfeld, J. (2005). BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Molecular Biology of the Cell, 16, 5891–5900.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Asea, A., Kraeft, S.-K., Kurt-Jones, E. A., et al. (2000). HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nature Medicine, 6, 435.CrossRefPubMedGoogle Scholar
  11. Asea, A., Jean-Pierre, C., Kaur, P., et al. (2008). Heat shock protein-containing exosomes in mid-trimester amniotic fluids. Journal of Reproductive Immunology, 79, 12–17.PubMedCrossRefGoogle Scholar
  12. Banerjee, S., Sangwan, V., McGinn, O., et al. (2013). Triptolide-induced cell death in pancreatic cancer is mediated by O-GlcNAc modification of transcription factor Sp1. Journal of Biological Chemistry, 288, 33927–33938.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bausero, M. A., Page, D. T., Osinaga, E., & Asea, A. (2004). Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumor Biology, 25, 243–251.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bevilacqua, A., Fiorenza, M. T., & Mangia, F. (1997). Developmental activation of an episomic hsp70 gene promoter in two-cell mouse embryos by transcription factor Sp1. Nucleic Acids Research, 25, 1333–1338.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Black, B. E., Holaska, J. M., Lévesque, L., et al. (2001). NXT1 is necessary for the terminal step of Crm1-mediated nuclear export. The Journal of Cell Biology, 152, 141–156.PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brocchieri, L., De Macario, E. C., & Macario, A. J. (2008). hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evolutionary Biology, 8, 19.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Calderwood, S., & Asea, A. (2002). Targeting HSP70 induced thermotolerance for design of thermal sensitizers. International Journal of Hyperthermia, 18, 597–608.PubMedCrossRefGoogle Scholar
  18. Carmody, S. R., Tran, E. J., Apponi, L. H., Corbett, A. H., & Wente, S. R. (2010). The mitogen-activated protein kinase Slt2 regulates nuclear retention of non-heat shock mRNAs during heat shock-induced stress. Molecular and Cellular Biology, 30, 5168–5179.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chehna-Patel, N., Warty, N., Sachdeva, G., & Khole, V. (2011). Proteolytic tailoring of the heat shock protein 70 and its implications in the pathogenesis of endometriosis. Fertility and Sterility, 95, 1560–1567. e3.PubMedCrossRefGoogle Scholar
  20. Chen, T., Sun, H., Lu, J., et al. (2002). Histone acetylation is involved in hsp70 gene transcription regulation in Drosophila melanogaster. Archives of Biochemistry and Biophysics, 408, 171–176.PubMedCrossRefGoogle Scholar
  21. Chou, S.-D., Prince, T., Gong, J., & Calderwood, S. K. (2012). mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS One, 7, e39679.PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chu, B., Soncin, F., Price, B. D., Stevenson, M. A., & Calderwood, S. K. (1996). Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. Journal of Biological Chemistry, 271, 30847–30857.PubMedCrossRefGoogle Scholar
  23. Dai, Q., Qian, S.-B., Li, H.-H., et al. (2005). Regulation of the cytoplasmic quality control protein degradation pathway by BAG2. Journal of Biological Chemistry, 280, 38673–38681.PubMedCrossRefGoogle Scholar
  24. Daugaard, M., Rohde, M., & Jäättelä, M. (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Letters, 581, 3702–3710.PubMedCrossRefGoogle Scholar
  25. Deka, K., & Saha, S. (2017). Arginylation: A new regulator of mRNA stability and heat stress response. Cell Death & Disease, 8, e2604.CrossRefGoogle Scholar
  26. Deka, K., Singh, A., Chakraborty, S., Mukhopadhyay, R., & Saha, S. (2016). Protein arginylation regulates cellular stress response by stabilizing HSP70 and HSP40 transcripts. Cell Death Discovery, 2, 16074.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Dellavalle, R. P., Petersen, R., & Lindquist, S. (1994). Preferential deadenylation of Hsp70 mRNA plays a key role in regulating Hsp70 expression in Drosophila melanogaster. Molecular and Cellular Biology, 14, 3646–3659.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dubois, M.-F., Nguyen, V. T., Bonnet, F., et al. (1999). Heat shock of HeLa cells inactivates a nuclear protein phosphatase specific for dephosphorylation of the C-terminal domain of RNA polymerase II. Nucleic Acids Research, 27, 1338–1344.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Duncan, R., & Hershey, J. (1984). Heat shock-induced translational alterations in HeLa cells. Initiation factor modifications and the inhibition of translation. Journal of Biological Chemistry, 259, 11882–11889.PubMedGoogle Scholar
  30. Gallouzi, I.-E., Brennan, C. M., & Steitz, J. A. (2001). Protein ligands mediate the CRM1-dependent export of HuR in response to heat shock. RNA, 7, 1348–1361.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Garbuz, D. (2017). Regulation of heat shock gene expression in response to stress. Molecular Biology, 51, 352–367.CrossRefGoogle Scholar
  32. Gómez, A. V., Córdova, G., Munita, R., et al. (2015). Characterizing HSF1 binding and post-translational modifications of hsp70 promoter in cultured cortical neurons: Implications in the heat-shock response. PLoS One, 10, e0129329.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Green, M., Schuetz, T. J., Sullivan, E. K., & Kingston, R. E. (1995). A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Molecular and Cellular Biology, 15, 3354–3362.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Guettouche, T., Boellmann, F., Lane, W. S., & Voellmy, R. (2005). Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochemistry, 6, 4.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Guo, Y., Guettouche, T., Fenna, M., et al. (2001). Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. Journal of Biological Chemistry, 276, 45791–45799.PubMedCrossRefGoogle Scholar
  36. Harrison, G. S., Drabkin, H. A., Kao, F.-T., et al. (1987). Chromosomal location of human genes encoding major heat-shock protein HSP70. Somatic Cell and Molecular Genetics, 13, 119–130.PubMedCrossRefGoogle Scholar
  37. Henics, T., Nagy, E., Oh, H. J., Csermely, P., Von Gabain, A., & Subjeck, J. R. (1999). Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. Journal of Biological Chemistry, 274, 17318–17324.PubMedCrossRefGoogle Scholar
  38. Hickey, E. D., & Weber, L. A. (1982). Modulation of heat shock polypeptide synthesis in HeLa cells during hyperthermia and recovery. Biochemistry, 21, 1513–1521.PubMedCrossRefGoogle Scholar
  39. Holmberg, C. I., Hietakangas, V., Mikhailov, A., et al. (2001). Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. The EMBO Journal, 20, 3800–3810.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Hunt, C., & Morimoto, R. I. (1985). Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proceedings of the National Academy of Sciences, 82, 6455–6459.CrossRefGoogle Scholar
  41. Jiang, J., Ballinger, C. A., Wu, Y., et al. (2001). CHIP is a U-box-dependent E3 ubiquitin ligase identification of Hsc70 as a target for ubiquitylation. Journal of Biological Chemistry, 276, 42938–42944.PubMedCrossRefGoogle Scholar
  42. Katahira, J., Inoue, H., Hurt, E., & Yoneda, Y. (2009). Adaptor Aly and co-adaptor Thoc5 function in the Tap-p15-mediated nuclear export of HSP70 mRNA. The EMBO Journal, 28, 556–567.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Kaur, P., Reis, M. D., Couchman, G. R., Forjuoh, S. N., Greene, J. F., Jr., & Asea, A. (2010). Role of heat shock proteins in obesity and type 2 diabetes. In Heat shock proteins and whole body physiology (pp. 19–29). Dordrecht: Springer.CrossRefGoogle Scholar
  44. Kaur, P., Hurwitz, M. D., Krishnan, S., & Asea, A. (2011). Combined hyperthermia and radiotherapy for the treatment of cancer. Cancer, 3, 3799–3823.CrossRefGoogle Scholar
  45. Khanna, N., Hu, Y., & Belmont, A. S. (2014). HSP70 transgene directed motion to nuclear speckles facilitates heat shock activation. Current Biology, 24, 1138–1144.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Kraynik, S. M., Gabanic, A., Anthony, S. R., et al. (2015). The stress-induced heat shock protein 70.3 expression is regulated by a dual-component mechanism involving alternative polyadenylation and HuR. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1849, 688–696.CrossRefGoogle Scholar
  47. Kukreti, H., Amuthavalli, K., Harikumar, A., et al. (2013). Muscle-specific microRNA1 (miR1) targets heat shock protein 70 (HSP70) during dexamethasone-mediated atrophy. Journal of Biological Chemistry, 288, 6663–6678.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Leung, T. K., Hall, C., Rajendran, M., Spurr, N. K., & Lim, L. (1992). The human heat-shock genes HSPA6 and HSPA7 are both expressed and localize to chromosome 1. Genomics, 12, 74–79.PubMedCrossRefGoogle Scholar
  49. Lindquist, S., & Craig, E. (1988). The heat-shock proteins. Annual Review of Genetics, 22, 631–677.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Loison, F., Debure, L., Nizard, P., Le Goff, P., Michel, D., & Le Dréan, Y. (2006). Up-regulation of the clusterin gene after proteotoxic stress: Implication of HSF1–HSF2 heterocomplexes. Biochemical Journal, 395, 223–231.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Ma, D. H., Lai, J.-Y., Chen, H.-C. J., Yeh, L.-K., & Chen, J.-K. (2011). Up-regulation of Heat Shock Protein 70-1 (Hsp70-1) in human Limbo-corneal epithelial cells cultivated on amniotic membrane: A proteomic study. Investigative Ophthalmology & Visual Science, 52, 6678–6678.Google Scholar
  52. MacKenzie, T. N., Mujumdar, N., Banerjee, S., et al. (2013). Triptolide induces the expression of miR-142-3p: A negative regulator of heat shock protein 70 and pancreatic cancer cell proliferation. Molecular Cancer Therapeutics, 12, 1266–1275.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Madamanchi, N. R., Li, S., Patterson, C., & Runge, M. S. (2001). Reactive oxygen species regulate heat-shock protein 70 via the JAK/STAT pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 21, 321–326.PubMedCrossRefGoogle Scholar
  54. Mao, R., Rubio, V., Chen, H., Bai, L., Mansour, O., & Shi, Z.-Z. (2013). OLA1 protects cells in heat shock by stabilizing HSP70. Cell Death & Disease, 4, e491.CrossRefGoogle Scholar
  55. McCormick, W., & Penman, S. (1969). Regulation of protein synthesis in HeLa cells: Translation at elevated temperatures. Journal of Molecular Biology, 39, 315–333.PubMedCrossRefGoogle Scholar
  56. Melville, M. W., Tan, S.-L., Wambach, M., Song, J., Morimoto, R. I., & Katze, M. G. (1999). The cellular inhibitor of the PKR protein kinase, P58IPK, is an influenza virus-activated co-chaperone that modulates heat shock protein 70 activity. Journal of biological chemistry, 274, 3797–3803.PubMedCrossRefGoogle Scholar
  57. Milner, C. M., & Campbell, R. D. (1990). Structure and expression of the three MHC-linked HSP70 genes. Immunogenetics, 32, 242–251.PubMedCrossRefGoogle Scholar
  58. Minsky, N., & Roeder, R. G. (2015). Direct link between metabolic regulation and the heat-shock response through the transcriptional regulator PGC-1α (Vol. 112, pp. E5669–E5E78). Proceedings of the National Academy of Sciences.CrossRefGoogle Scholar
  59. Miyata, Y., Rauch, J. N., Jinwal, U. K., et al. (2012). Cysteine reactivity distinguishes redox sensing by the heat-inducible and constitutive forms of heat shock protein 70. Chemistry & Biology, 19, 1391–1399.CrossRefGoogle Scholar
  60. Moore, M., Schaack, J., Baim, S. B., Morimoto, R. I., & Shenk, T. (1987). Induced heat shock mRNAs escape the nucleocytoplasmic transport block in adenovirus-infected HeLa cells. Molecular and Cellular Biology, 7(12), 4505.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Morgan, W. D. (1989). Transcription factor Sp1 binds to and activates a human hsp70 gene promoter. Molecular and Cellular Biology, 9, 4099–4104.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Morimoto, R.I. (2011). The heat shock response: Systems biology of proteotoxic stress in aging and disease. Paper prresented at the Cold Spring Harbor symposia on quantitative biology.PubMedCrossRefGoogle Scholar
  63. Moseley, P., Wallen, E., McCafferty, J., Flanagan, S., & Kern, J. (1993). Heat stress regulates the human 70-kDa heat-shock gene through the 39-untranslated region. American Journal of Physiology-Lung Cellular and Molecular Physiology, 264, L533–LL37.CrossRefGoogle Scholar
  64. Murphy, M. E. (2013). The HSP70 family and cancer. Carcinogenesis, 34, 1181–1188.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Neef, D. W., Jaeger, A. M., Gomez-Pastor, R., Willmund, F., Frydman, J., & Thiele, D. J. (2014). A direct regulatory interaction between chaperonin TRiC and stress-responsive transcription factor HSF1. Cell Reports, 9, 955–966.PubMedPubMedCentralCrossRefGoogle Scholar
  66. Newton, E. M., Knauf, U., Green, M., & Kingston, R. E. (1996). The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Molecular and Cellular Biology, 16, 839–846.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Östling, P., Björk, J. K., Roos-Mattjus, P., Mezger, V., & Sistonen, L. (2007). Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. Journal of Biological Chemistry, 282, 7077–7086.PubMedCrossRefGoogle Scholar
  68. Parsian, A. J., Sheren, J. E., Tao, T. Y., et al. (2000). The human Hsp70B gene at the HSPA7 locus of chromosome 1 is transcribed but non-functional. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1494, 201–205.CrossRefGoogle Scholar
  69. Place, R. F., & Noonan, E. J. (2014). Non-coding RNAs turn up the heat: An emerging layer of novel regulators in the mammalian heat shock response. Cell Stress and Chaperones, 19, 159–172.PubMedCrossRefGoogle Scholar
  70. Polla, B., Healy, A., Wojno, W., & Krane, S. (1987). Hormone 1 alpha, 25-dihydroxyvitamin D3 modulates heat shock response in monocytes. American Journal of Physiology-Cell Physiology, 252, C640–CC49.CrossRefGoogle Scholar
  71. Qian, S.-B., McDonough, H., Boellmann, F., Cyr, D. M., & Patterson, C. (2006). CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature, 440, 551.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Radons, J. (2016). The human HSP70 family of chaperones: Where do we stand? Cell Stress and Chaperones, 21, 379–404.PubMedPubMedCentralCrossRefGoogle Scholar
  73. Reina, C. P., Nabet, B. Y., Young, P. D., & Pittman, R. N. (2012). Basal and stress-induced Hsp70 are modulated by ataxin-3. Cell Stress and Chaperones, 17, 729–742.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Rogon, C., Ulbricht, A., Hesse, M., et al. (2014). HSP70-binding protein HSPBP1 regulates chaperone expression at a posttranslational level and is essential for spermatogenesis. Molecular Biology of the Cell, 25, 2260–2271.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Rubtsova, M. P., Sizova, D. V., Dmitriev, S. E., Ivanov, D. S., Prassolov, V. S., & Shatsky, I. N. (2003). Distinctive properties of the 5′-untranslated region of human hsp70 mRNA. Journal of Biological Chemistry, 278, 22350–22356.PubMedCrossRefGoogle Scholar
  76. Saha, S., & Kashina, A. (2011). Posttranslational arginylation as a global biological regulator. Developmental Biology, 358, 1–8.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Saito, Y., Yamagishi, N., & Hatayama, T. (2007). Different localization of Hsp105 family proteins in mammalian cells. Experimental Cell Research, 313, 3707–3717.PubMedCrossRefGoogle Scholar
  78. Saito, Y., Yukawa, A., Matozaki, M., et al. (2014). Nmi interacts with Hsp105β and enhances the Hsp105β-mediated Hsp70 expression. Experimental Cell Research, 327, 163–170.PubMedCrossRefGoogle Scholar
  79. Saito, Y., Nakagawa, T., Kakihana, A., et al. (2016). Yeast two-hybrid and one-hybrid screenings identify regulators of hsp70 gene expression. Journal of Cellular Biochemistry, 117, 2109–2117.PubMedCrossRefGoogle Scholar
  80. Sandqvist, A., Björk, J. K., Åkerfelt, M., et al. (2009). Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Molecular Biology of the Cell, 20, 1340–1347.PubMedPubMedCentralCrossRefGoogle Scholar
  81. Sasi, B. K., Sonawane, P. J., Gupta, V., Sahu, B. S., & Mahapatra, N. R. (2014). Coordinated transcriptional regulation of Hspa1a gene by multiple transcription factors: Crucial roles for HSF-1, NF-Y, NF-κB, and CREB. Journal of Molecular Biology, 426, 116–135.PubMedCrossRefGoogle Scholar
  82. Schett, G., Steiner, C., Xu, Q., Smolen, J., & Steiner, G. (2003). TNF [alpha] mediates susceptibility to heat-induced apoptosis by protein phosphatase-mediated inhibition of the HSF1/hsp70 stress response. Cell Death and Differentiation, 10, 1126.PubMedCrossRefGoogle Scholar
  83. Shi, Y., Mosser, D. D., & Morimoto, R. I. (1998). Molecularchaperones as HSF1-specific transcriptional repressors. Genes & Development, 12, 654–666.CrossRefGoogle Scholar
  84. Siddiqui, F., Avery, P. R., Li, C.-Y., et al. (2008). Induction of the human heat shock promoter HSP70B by nutritional stress: Implications for cancer gene therapy. Cancer Investigation, 26, 553–561.PubMedCrossRefGoogle Scholar
  85. Simioni, M. B., De Thonel, A., Hammann, A., et al. (2009). Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity. Oncogene, 28(37), 3332–3344.CrossRefGoogle Scholar
  86. Skaggs, H. S., Xing, H., Wilkerson, D. C., et al. (2007). HSF1-TPR interaction facilitates export of stress-induced HSP70 mRNA. Journal of Biological Chemistry, 282, 33902–33907.PubMedPubMedCentralCrossRefGoogle Scholar
  87. Sorger, P. K., & Nelson, H. C. (1989). Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell, 59, 807–813.PubMedCrossRefGoogle Scholar
  88. Stephanou, A., Isenberg, A. D., Akira, S., Kishimoto, T., & Latchman, S. D. (1998). The nuclear factor interleukin-6 (NF-IL6) and signal transducer and activator of transcription-3 (STAT-3) signalling pathways co-operate to mediate the activation of the hsp90β gene by interleukin-6 but have opposite effects on its inducibility by heat shock. Biochemical Journal, 330, 189–195.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Stephanou, A., Isenberg, D. A., Nakajima, K., & Latchman, D. S. (1999). Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the Hsp-70 and Hsp-90β gene promoters. Journal of Biological Chemistry, 274, 1723–1728.PubMedCrossRefGoogle Scholar
  90. Suaud, L., Miller, K., Panichelli, A. E., Randell, R. L., Marando, C. M., & Rubenstein, R. C. (2011). 4-Phenylbutyrate stimulates Hsp70 expression through the Elp2 component of elongator and STAT-3 in cystic fibrosis epithelial cells. Journal of Biological Chemistry, 286, 45083–45092.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Sullivan, E. K., Weirich, C. S., Guyon, J. R., Sif, S., & Kingston, R. E. (2001). Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Molecular and Cellular Biology, 21, 5826–5837.PubMedPubMedCentralCrossRefGoogle Scholar
  92. Taira, T., Sawai, M., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M., & Ariga, H. (1999). Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. Journal of Biological Chemistry, 274, 24270–24279.PubMedCrossRefGoogle Scholar
  93. Takii, R., Fujimoto, M., Tan, K., et al. (2015). ATF1 modulates the heat shock response by regulating the stress-inducible heat shock factor 1 transcription complex. Molecular and Cellular Biology, 35, 11–25.PubMedCrossRefGoogle Scholar
  94. Tan, K., Fujimoto, M., Takii, R., Takaki, E., Hayashida, N., & Nakai, A. (2015). Erratum: Mitochondrial SSBP1 protects cells from proteotoxic stresses by potentiating stress-induced HSF1 transcriptional activity. Nature Communications, 6, 6964.PubMedPubMedCentralCrossRefGoogle Scholar
  95. Tanikawa, J., Ichikawa-Iwata, E., Kanei-Ishii, C., et al. (2000). p53 suppresses the c-Myb-induced activation of heat shock transcription factor 3. Journal of Biological Chemistry, 275, 15578–15585.PubMedCrossRefGoogle Scholar
  96. Teshima, S., Rokutan, K., Takahashi, M., Nikawa, T., & Kishi, K. (1996). Induction of heat shock proteins and their possible roles in macrophages during activation by macrophage colony-stimulating factor. Biochemical Journal, 315, 497–504.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Tetievsky, A., & Horowitz, M. (2010). Posttranslational modifications in histones underlie heat acclimation-mediated cytoprotective memory. Journal of Applied Physiology, 109, 1552–1561.PubMedCrossRefGoogle Scholar
  98. Tetievsky, A., Cohen, O., Eli-Berchoer, L., et al. (2008). Physiological and molecular evidence of heat acclimation memory: A lesson from thermal responses and ischemic cross-tolerance in the heart. Physiological Genomics, 34, 78–87.PubMedCrossRefGoogle Scholar
  99. Theodorakis, N. G., & Morimoto, R. I. (1987). Posttranscriptional regulation of hsp70 expression in human cells: Effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Molecular and Cellular Biology, 7, 4357–4368.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Thomson, S., Hollis, A., Hazzalin, C. A., & Mahadevan, L. C. (2004). Distinct stimulus-specific histone modifications at hsp70 chromatin targeted by the transcription factor heat shock factor-1. Molecular Cell, 15, 585–594.PubMedCrossRefGoogle Scholar
  101. Tranter, M., Ren, X., Forde, T., et al. (2010). NF-κB driven cardioprotective gene programs; Hsp70. 3 and cardioprotection after late ischemic preconditioning. Journal of Molecular and Cellular Cardiology, 49, 664–672.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Tranter, M., Helsley, R. N., Paulding, W. R., et al. (2011). Coordinated post-transcriptional regulation of Hsp70. 3 gene expression by microRNA and alternative polyadenylation. Journal of Biological Chemistry, 286, 29828–29837.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Trinklein, N. D., Murray, J. I., Hartman, S. J., Botstein, D., & Myers, R. M. (2004). The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Molecular Biology of the Cell, 15, 1254–1261.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Turturici, G., Sconzo, G., & Geraci, F. (2011). Hsp70 and its molecular role in nervous system diseases. Biochemistry Research International, 2011, 1.CrossRefGoogle Scholar
  105. Venetianer, A., Dubois, M. F., Nguyen, V. T., Bellier, S., Seo, S. J., & Bensaude, O. (1995). Phosphorylation state of the RNA polymerase II C-Terminal Domain (CTD) in heat-shocked cells. The FEBS Journal, 233, 83–92.Google Scholar
  106. Vera, M., Pani, B., Griffiths, L. A., et al. (2014). The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife, 3, e03164.PubMedPubMedCentralCrossRefGoogle Scholar
  107. Vihervaara, A., & Sistonen, L. (2014) HSF1 at a glance: The Company of Biologists Ltd.PubMedCrossRefGoogle Scholar
  108. Walters, R. W., & Parker, R. (2015). Coupling of ribostasis and proteostasis: Hsp70 proteins in mRNA metabolism. Trends in Biochemical Sciences, 40, 552–559.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Wan, T., Zhou, X., Chen, G., et al. (2004). Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood, 103, 1747–1754.PubMedCrossRefPubMedCentralGoogle Scholar
  110. Wang, X., Grammatikakis, N., Siganou, A., Stevenson, M. A., & Calderwood, S. K. (2004). Interactions between extracellular signal-regulated protein kinase 1, 14-3-3ϵ, and heat shock factor 1 during stress. Journal of Biological Chemistry, 279, 49460–49469.PubMedCrossRefGoogle Scholar
  111. Wang, T., Yu, Q., Chen, J., Deng, B., Qian, L., & Le, Y. (2010). PP2A mediated AMPK inhibition promotes HSP70 expression in heat shock response. PLoS One, 5, e13096.PubMedPubMedCentralCrossRefGoogle Scholar
  112. Welch, W. J., & Feramisco, J. (1984). Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. Journal of Biological Chemistry, 259, 4501–4513.PubMedGoogle Scholar
  113. Westerheide, S. D., Anckar, J., Stevens, S. M., Sistonen, L., & Morimoto, R. I. (2009). Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science, 323, 1063–1066.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Wu, G., Osada, M., Guo, Z., et al. (2005). ΔNp63α up-regulates the Hsp70 gene in human cancer. Cancer Research, 65, 758–766.PubMedGoogle Scholar
  115. Wu, C.-Y., Lin, C.-T., Wu, M.-Z., & Wu, K.-J. (2011). Induction of HSPA4 and HSPA14 by NBS1 overexpression contributes to NBS1-induced in vitro metastatic and transformation activity. Journal of Biomedical Science, 18(1), 1.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Xavier, I. J., Mercier, P. A., McLoughlin, C. M., Ali, A., Woodgett, J. R., & Ovsenek, N. (2000). Glycogen synthase kinase 3β negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. Journal of Biological Chemistry, 275, 29147–29152.PubMedCrossRefGoogle Scholar
  117. Xia, C., Cai, Y., Lin, Y., Guan, R., Xiao, G., & Yang, J. (2016). MiR-133b-5p regulates the expression of the heat shock protein 70 during rat neuronal cell apoptosis induced by the gp120 V3 loop peptide. Journal of Medical Virology, 88, 437–447.PubMedCrossRefGoogle Scholar
  118. Xie, Y., Chen, C., Stevenson, M. A., Hume, D. A., Auron, P. E., & Calderwood, S. K. (2002). NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochemical and Biophysical Research Communications, 291, 1071–1080.PubMedCrossRefGoogle Scholar
  119. Xing, H., Mayhew, C. N., Cullen, K. E., Park-Sarge, O.-K., & Sarge, K. D. (2004). HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin. Journal of Biological Chemistry, 279, 10551–10555.PubMedCrossRefGoogle Scholar
  120. Xu, L., Ma, X., Bagattin, A., & Mueller, E. (2016). The transcriptional coactivator PGC1α protects against hyperthermic stress via cooperation with the heat shock factor HSF1. Cell Death & Disease, 7, e2102–e2e02.CrossRefGoogle Scholar
  121. Yamagishi, N., Fujii, H., Saito, Y., & Hatayama, T. (2009). Hsp105β upregulates hsp70 gene expression through signal transducer and activator of transcription-3. The FEBS Journal, 276, 5870–5880.PubMedCrossRefGoogle Scholar
  122. Yang, S.-H., Nussenzweig, A., Li, L., et al. (1996). Modulation of thermal induction of hsp70 expression by Ku autoantigen or its individual subunits. Molecular and Cellular Biology, 16, 3799–3806.PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yang, Z., Zhuang, L., Szatmary, P., et al. (2015). Upregulation of heat shock proteins (HSPA12A, HSP90B1, HSPA4, HSPA5 and HSPA6) in tumour tissues is associated with poor outcomes from HBV-related early-stage hepatocellular carcinoma. International Journal of Medical Sciences, 12, 256.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Yin, C., Salloum, F. N., & Kukreja, R. C. (2009). A novel role of microRNA in late preconditioning. Circulation Research, 104, 572–575.PubMedPubMedCentralCrossRefGoogle Scholar
  125. Yueh, A., & Schneider, R. J. (2000). Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes & Development, 14, 414–421.Google Scholar
  126. Zhang, M., Blake, M. J., Gout, P. W., Buckley, D. J., & Buckley, A. R. (1999). Proteolysis of heat shock transcription factor is associated with apoptosis in rat Nb2 lymphoma cells. Cell Growth & Differentiation: The Molecular Biology Journal of the American Association for Cancer Research, 10, 759–767.Google Scholar
  127. Zhang, X., Gao, X., Coots, R. A., Conn, C. S., Liu, B., & Qian, S.-B. (2015). Translational control of the cytosolic stress response by mitochondrial ribosomal protein L18. Nature Structural & Molecular Biology, 22, 404–410.CrossRefGoogle Scholar
  128. Zhao, M., Tang, D., Lechpammer, S., et al. (2002). Double-stranded RNA-dependent protein kinase (pkr) is essential for thermotolerance, accumulation of HSP70, and stabilization of ARE-containing HSP70 mRNA during stress. Journal of Biological Chemistry, 277, 44539–44547.PubMedCrossRefGoogle Scholar
  129. Zhu, X.-n., Chen, L.-p., Bai, Q., et al. (2014). PP2A–AMPKα–HSF1 axis regulates the metal-inducible expression of HSPs and ROS clearance. Cellular Signalling, 26, 825–832.PubMedCrossRefGoogle Scholar
  130. Zou, J., Guo, Y., Guettouche, T., Smith, D. F., & Voellmy, R. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 94, 471–480.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Biology and BiotechnologyTezpur UniversityNapaamIndia

Personalised recommendations