Advertisement

Algae in Biotechnological Processes

  • Emilia Niemczyk
  • Beata Żyszka-Haberecht
  • Damian Drzyzga
  • Monika Lenartowicz
  • Jacek Lipok
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 8)

Abstract

As photoautotrophic organisms, algae possess all of the valuable features that determine their role as the primary producers in the biosphere. A wide range of tolerance based on their extremely efficient adaptation to biochemical processes, as well as the specific cellular structure of these organisms, when correlated with the ecological plasticity of microalgae in particular, predispose these biota to growing and developing under either laboratory or industrial conditions. Hence, the natural features of algae have opened wide the door for the multidirectional biotechnological use of these organisms, with a dynamically growing number of such applications fully supporting this thesis. Among the variety of examples, however, there are two main areas of activity that involve algae in biotechnological processes. The first has arisen historically out of the long tradition of the use of biomass of algae or algal isolates as a source of substances with qualities of interest. The second area is based on the impressive biochemical machinery of algae that are able to produce, de novo, a huge number of organic compounds, as well as transform all of them. This approach allows for the use of algae as effective biocatalysts. This chapter is composed of four short stories, two of which illustrate algae as a source of select valuable chemicals (phycobiliproteins, polyphenols) and the other two of which are dedicated to the biocatalytical abilities of those organisms to protect ecosystems against organic pollutants and transition metal ions.

Keywords

Microalgae Cyanobacteria Natural products Biocatalysis Phycobiliproteins Polyphenols Organic pollutants Metal ions 

References

  1. Adalbjörnsson BV, Jónsdóttir R (2015) Enzyme-enhanced extraction of antioxidant ingredients from algae. Methods Mol Biol 1308:145–150PubMedCrossRefGoogle Scholar
  2. Agatonovic-Kustrin S, Morton DW, Ristivojević P (2016) Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis. J Chromatogr A 1468:228–235CrossRefGoogle Scholar
  3. Al-Homaidan AA, Al-Houri HJ, Al-Hazzani AA, Elgaaly G, Moubayed NMS (2014) Biosorption of copper ions from aqueous solutions by Spirulina platensis biomass. Arab J Chem 7:57–62CrossRefGoogle Scholar
  4. Al-Rub FA, El-Naas M, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773CrossRefGoogle Scholar
  5. Ambrozova JV, Misurcova L, Vicha R, Machu L, Samek D, Baron M, Mlcek J, Sochor J, Jurikova T (2014) Influence of extractive solvents on lipid and fatty acids content of edible freshwater algal and seaweed products, the green microalga Chlorella kessleri and the cyanobacterium Spirulina platensis. Molecules 19:2344–2360PubMedCrossRefGoogle Scholar
  6. Amsler CD, Fairhead VA (2006) Defensive and sensory chemical ecology of brown algae. Adv Bot Res 43:1–91Google Scholar
  7. Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentão P (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828PubMedCrossRefGoogle Scholar
  8. Awasthi M, Rai LC (2004) Adsorption of nickel, zinc and cadmium by immobilized green algae and cyanobacteria: a comparative study. Ann Microbiol 54:257–267Google Scholar
  9. Bachchhav MB, Kulkarni MV, Ingale AG (2016) Enhanced phycocyanin production from Spirulina platensis using light emitting diode. Dig J Inst Eng India Ser E.  https://doi.org/10.1007/s40034-016-0090-8
  10. Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180PubMedPubMedCentralCrossRefGoogle Scholar
  11. Baier K, Lehmann H, Stephan DP, Lockau W (2004) NblA is essential for phycobilisome degradation in Anabaena sp. strain PCC 7120 but not for development of functional heterocysts. Microbiology 150:2739–2749.  https://doi.org/10.1099/mic.0.27153-0 CrossRefPubMedGoogle Scholar
  12. Bailliez C, Largeau C, Berkaloff C, Casadevall E (1986) Immobilization of Botryococcus braunii in alginate: influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl Microbiol Biotechnol 23:361–366CrossRefGoogle Scholar
  13. Balaji S, Kalaivani T, Rajasekaran C (2013) Biosorption of zinc and nickel and its effect on growth of different Spirulina strains. Clean Soil Air Water 42:507–512CrossRefGoogle Scholar
  14. Balcerzak L, Lipok J, Strub D, Lochynski S (2014) Biotransformations of monoterpenes by photoautotrophic micro-organisms. J Appl Microbiol 117:1523–1536PubMedCrossRefGoogle Scholar
  15. Beale SI, Cornejo J (1991) Biosynthesis of Phycobilins. 15,16-Dihydrobiliverdin IXα is a partially reduced intermediate in the formation of phycobilins from biliverdin IXα. J Biol Chem 266:22341–22345PubMedGoogle Scholar
  16. Benavides J, Rito-Palomares M (2004) Bioprocess intensification: a potential aqueous two-phase process for the primary recovery of B-phycoerythrin from Porphyridium cruentum. J Chromatogr B 807:33–38.  https://doi.org/10.1016/j.jchromb.2004.01.028 CrossRefGoogle Scholar
  17. Benitez-Nelson C (2015) Ocean chemistry. The missing link in oceanic phosphorus cycling? Science 348:759–760PubMedCrossRefGoogle Scholar
  18. Bermejo Román R, Alvárez-Pez JM, Acién Fernández FG, Molina Grima E (2002) Recovery of pure B-phycoerythrin from the microalga Porphyridium cruentum. J Biotechnol 93:73–85PubMedCrossRefGoogle Scholar
  19. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67CrossRefGoogle Scholar
  20. Borowitzka MA (2013) High-value products from microalgae – their development and commercialisation. J Appl Phycol 25:743–756.  https://doi.org/10.1007/s10811-013-9983-9 CrossRefGoogle Scholar
  21. Borowitzka MA (2016) Algal physiology and large-scale outdoor cultures of microalgae. In: Borowitzka MA, Beardall J, Raven JA (eds) The physiology of microalgae. Springer, Dordrecht, pp 601–652CrossRefGoogle Scholar
  22. Borowitzka MA, Moheimani NR (2013) Open pond culture systems. In: Borowitzka MA, Moheimani NR (eds) Algae for biofuels and energy. Springer, Dordrecht, pp 133–152CrossRefGoogle Scholar
  23. Boulila A, Hassen I, Haouari L, Mejri F, Ben Amor I, Casabianca H, Hosni K (2015) Enzyme-assisted extraction of bioactive compounds from bay leaves (Laurus nobilis L.). Industrial Crops and Products 74:485–493CrossRefGoogle Scholar
  24. Bozeman J, Koopman B, Bitton G (1989) Toxicity testing using immobilized algae. Aquat Toxicol 14:345–352CrossRefGoogle Scholar
  25. Brown SB, Holroyd JA, Vernon DI (1984) Biosynthesis of phycobiliproteins. Incorporation of biliverdin into phycocyanin of the red alga Cyanidium caldarium. Biochem J 219:905–909PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bryant DA (1982) Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. J Gen Microbiol 128:835–844Google Scholar
  27. Caceres TP, Megharaj M, Naidu R (2008) Biodegradation of the pesticide fenamiphos by ten different species of green algae and cyanobacteria. Curr Microbiol 57:643–646PubMedCrossRefGoogle Scholar
  28. Cerniglia CE, Freeman JP, Van Baalen C (1981) Biotransformation and toxicity of aniline and aniline derivatives in cyanobacteria. Arch Microbiol 130:272–275PubMedCrossRefGoogle Scholar
  29. Chaloub RM, Motta NMS, de Araujo SP, de Aguiar PF, da Silva AF (2015) Combined effects of irradiance, temperature and nitrate concentration on phycoerythrin content in the microalga Rhodomonas sp. (Cryptophyceae). Algal Res 8:89–94.  https://doi.org/10.1016/j.algal.2015.01.008 CrossRefGoogle Scholar
  30. Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzym Microb Technol 20:221–224.  https://doi.org/10.1016/S0141-0229(96)00116-0 CrossRefGoogle Scholar
  31. Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis photoheterotrophic culture. Bitechnol Lett 18:603–308.  https://doi.org/10.1007/BF00140211 CrossRefGoogle Scholar
  32. Chojnacka K (2010) Biosorption and bioaccumulation – the prospects for practical applications. Environ Int 36:299–307PubMedCrossRefPubMedCentralGoogle Scholar
  33. Chojnacka K, Zielińska A (2012) Evaluation of growth yield of Spirulina (Arthrospira) sp. in photoautotrophic, heterotrophic and mixotrophic cultures. Word J Microbiol Biotechnol 28:437–445.  https://doi.org/10.1007/s11274-011-0833-0 CrossRefGoogle Scholar
  34. Colica G, Caparrotta S, Bertini G, De Philippis R (2012) Gold biosorption by exopolysaccharide producing cyanobacteria and purple nonsulphur bacteria. J Appl Microbiol 113:1380–1388PubMedCrossRefPubMedCentralGoogle Scholar
  35. Connan S, Goulard F, Stiger V, Deslandes E, Ar Gall E (2004) Interspecific and temporal variation in phlorotannin levels in an assemblage of brown algae. Bot Mar 47:410–416CrossRefGoogle Scholar
  36. Cordery J, Will AJ, Atkinson K, Wills BA (1994) Extraction and recovery of silver from low grade liquors using microalgae. Miner Eng 7:1003–1015CrossRefGoogle Scholar
  37. Das N, Vimala R, Karthika P (2008) Biosorption of heavy metals – an overview. Indian J Biotechnol 7:159–169Google Scholar
  38. De Corte S, Hennebel T, Verschuere S, Cuvelier C, Verstraete W, Boon N (2010) Gold nanoparticle formation using Shewanella oneidensis: a fast biosorption and slow reduction process. J Chem Technol Biotechnol 86:547–553CrossRefGoogle Scholar
  39. De Philippis R, Colica G, Micheletti E (2011) Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 92:697–708PubMedCrossRefGoogle Scholar
  40. De Vargas I, Macaskie LE, Guibal E (2004) Biosorption of palladium and platinum by sulfate-reducing bacteria. J Chem Technol Biotechnol 79:49–56CrossRefGoogle Scholar
  41. Denis C, Massé A, Fleurence J, Jaouen P (2009) Concentration and pre-purification with ultrafiltration of a R-phycoerythrin solution extracted from macro-algae Grateloupia turuturu: process definition and up-scaling. Sep Purif Technol 69:37–42.  https://doi.org/10.1016/j.seppur.2009.06.017 CrossRefGoogle Scholar
  42. Deschatre M, Ghillebaert F, Guezennec J, Simon-Colin C (2015) Study of biosorption of copper and silver by marine bacterial exopolysaccharides. WIT Trans Ecol Environ 196:549–559CrossRefGoogle Scholar
  43. Drzyzga D, Forlani G, Vermander J, Kafarski P, Lipok J (2017) Biodegradation of the aminopolyphosphonate DTPMP by the cyanobacterium Anabaena variabilis proceeds via a C-P lyase-independent pathway. Environ Microbiol 19:1065–1076PubMedCrossRefGoogle Scholar
  44. Eisler R (2003) Biorecovery of gold. Indian J Exp Biol 41:967–971PubMedGoogle Scholar
  45. FDA (2014) Federal register volume 79, number 70: listing of color additives exempt from certification; Spirulina extract. https://www.gpo.gov/fdsys/pkg/FR-2014-04-11s/html/2014-08099.htm. Accessed 26 Oct 2017
  46. Forlani G, Pavan M, Gramek M, Kafarski P, Lipok J (2008) Biochemical bases for a widespread tolerance of cyanobacteria to the phosphonate herbicide glyphosate. Plant Cell Physiol 49:443–456PubMedCrossRefGoogle Scholar
  47. Forlani G, Prearo V, Wieczorek D, Kafarski P, Lipok J (2011) Phosphonate degradation by Spirulina strains: cyanobacterial biofilters for the removal of anticorrosive polyphosphonates from wastewater. Enzym Microb Technol 48:299–305CrossRefGoogle Scholar
  48. Forlani G, Bertazzini M, Giberti S, Wieczorek D, Kafarski P, Lipok J (2013) Sublethal detergent concentrations increase metabolization of recalcitrant polyphosphonates by the cyanobacterium Spirulina platensis. Environ Sci Pollut Res Int 20:3263–3270PubMedCrossRefGoogle Scholar
  49. Glazer A (1994) Phycobiliproteins – a family of valuable, widely used flourophores. J Appl Phycol 6:105–112.  https://doi.org/10.1007/BF02186064 CrossRefGoogle Scholar
  50. Goiris K, Muylaert K, Fraeye I, Foubert I, De Brabanter J, De Cooman L (2012) Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J Appl Phycol 24:1477–1486CrossRefGoogle Scholar
  51. Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D, E Baart GJ, De Cooman L (2014) Detection of flavonoids in microalgae from different evolutionary lineages. J Phycol 50:483–492PubMedCrossRefGoogle Scholar
  52. Gokhale SV, Jyoti KK, Lele SS (2007) Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99:3600–3608PubMedCrossRefGoogle Scholar
  53. Graverholt OS, Eriksen NT (2007) Heterotrophic high-cell-density fed-batch and continuous-flow cultures of Galdieria sulphuraria and production of phycocyanin. Appl Microbiol Biotechnol 77:69–75.  https://doi.org/10.1007/s00253-007-1150-2 CrossRefPubMedGoogle Scholar
  54. Greene B, McPherson R, Darnall D (1987) Algal sorbents for selective metal ion recovery. In: Patterson JW, Passion R (eds) Metal speciation, separation and recovery. Lewis Publishers, Chelsea., 1987, pp 315–338Google Scholar
  55. Gross W, Schnarrenberger C (1995) Heterotrophic growth of two strains of the acido-thermophilic red alga Galdieria sulphuraria. Plant Cell Physiol 36:633–638Google Scholar
  56. Günerken E, D’Hondt E, Eppink MHM, Garcia-Gonzalez L, Elst K, Wijffels RH (2015) Cell disruption for microalgae biorefineries. Biotechnol Adv 33:243–260.  https://doi.org/10.1016/j.biotechadv.2015.01.008 CrossRefPubMedGoogle Scholar
  57. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169:1–15PubMedCrossRefGoogle Scholar
  58. Harnedy PA, Fitz Gerald RJ (2013) Extraction of protein from the macroalga Palmaria palmata. LWT – Food Sci Technol 51:375–382.  https://doi.org/10.1016/j.lwt.2012.09.023 CrossRefGoogle Scholar
  59. Hayouni EA, Abedrabba M, Bouix M, Hamdi M (2007) The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem 105:1126–1134CrossRefGoogle Scholar
  60. Heimann K, Cires S (2015) N2 -Fixing cyanobacteria: ecology and biotechnological applications. In: Se-Kwon K (ed) Handbook of microalgae: biotechnology advances. Academic, London, pp 501–515CrossRefGoogle Scholar
  61. Hoffmann JP (1998) Wastewater treatment with suspended and nonsuspended algae. J Phycol 34:757–763CrossRefGoogle Scholar
  62. Holm O, Hansen E, Lassen C, Stuer-Lauridsen F, Kjolholt J (2002) Heavy metals in waste. European Commission DG ENV. E3, Project ENV.E.3/ETU/2000/0058. Final reportGoogle Scholar
  63. Huertas MJ, Lopez-Maury L, Giner-Lamia J, Sanchez-Riego AM, Florencio FJ (2014) Metals in Cyanobacteria: analysis of the copper, nickel, cobalt and arsenic homeostasis mechanisms. Life 4:865–886PubMedPubMedCentralCrossRefGoogle Scholar
  64. Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413.  https://doi.org/10.1016/j.biortech.2009.09.038 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Kafarski P, Lejczak B, Forlani G (2000) Biodegradation of pesticides containing carbon to phosphorus bond. In: Hall JC, Hoagland RE, Zablotowicz RM (eds) Pesticide biotransformation in plants and microorganisms, Similarities and Divergencies. ACS, Washington, DC, pp 145–163CrossRefGoogle Scholar
  66. Kaplan D (2013) Absorption and adsorption of heavy metals by microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology. Blackwell Publishing, Ames, pp 439–447CrossRefGoogle Scholar
  67. Kaushik S, Sahu BK, Lawania RK, Tiwari RK (1999) Occurrence of heavy metals in lentic water of Gwalior region. Pollut Res 18:137–140Google Scholar
  68. Kim SM, Kang SW, Jeon JS, Jung YJ, Kim WR, Kim CY, Um BH (2013) Determination of major phlorotannins in Eisenia bicyclis using hydrophilic interaction chromatography: seasonal variation and extraction characteristics. Food Chem 138:2399–2406PubMedCrossRefGoogle Scholar
  69. Kirilovsky D, Kerfeld CA (2013) The orange carotenoid protein: a blue-green light photoactive protein. Photochem Photobiol Sci 12:1135–1143.  https://doi.org/10.1039/c3pp25406b CrossRefPubMedGoogle Scholar
  70. Kiyono M, Pan-Hou H (2006) Genetic engineering of bacteria for environmental remediation of mercury. J Health Sci 52:199–204CrossRefGoogle Scholar
  71. Koivikko R, Loponen J, Pihlaja K, Jormalainen V (2007) High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus. Phytochem Anal 18:326–332PubMedCrossRefGoogle Scholar
  72. Krishnaswamy R, Wilson DB (2000) Construction and characterization of an Escherichia coli strain genetically engineered for Ni (II) bioaccumulation. Appl Environ Microbiol 66:5383–5386PubMedPubMedCentralCrossRefGoogle Scholar
  73. Kronick MN (1988) Phycobiliproteins as labels in immunoassay. In: Ngo TT (ed) Nonisotopic immunoassay, 1st edn. Springer, New York, pp 163–185CrossRefGoogle Scholar
  74. Kula M, Rys M, Saja D, Tys J, Skoczowski A (2016) Far-red dependent changes in the chemical composition of Spirulina platensis. Eng Life Sci 16:777–785CrossRefGoogle Scholar
  75. Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264PubMedCrossRefGoogle Scholar
  76. Lefebvre DD, Kelly D, Budd K (2007) Biotransformation of Hg(II) by cyanobacteria. Appl Environ Microbiol 73:243–249PubMedCrossRefGoogle Scholar
  77. Les A, Walker RW (1984) Toxicity and binding of copper, zinc and cadmium by the blue- green alga Chroococcus paris. Water Air Soil Pollut 23:129–139CrossRefGoogle Scholar
  78. Li YX, Wijesekara I, Li Y, Kim SK (2011) Phlorotannins as bioactive agents from brown algae. Process Biochem 46:2219–2224CrossRefGoogle Scholar
  79. Lin S, Litaker RW, Sunda WG (2016) Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton. J Phycol 52:10–36PubMedCrossRefGoogle Scholar
  80. Lipok J, Owsiak T, Młynarz P, Forlani G, Kafarski P (2007) Phosphorus NMR as a tool to study mineralization of organophosphonates—the ability of Spirulina spp. to degrade glyphosate. Enzyme Microb Technol 41:286–291CrossRefGoogle Scholar
  81. Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4:118–126PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lodi A, Soletto D, Solisio C, Converti A (2008) Chromium(III) removal by Spirulina platensis biomass. Chem Eng J 136:151–155CrossRefGoogle Scholar
  83. López-Figueroa F (1992) Diurnal variation in pigment content in Porphyra laciniata and Chondrus crispus and its relation to the diurnal changes of underwater light quality and quantity. PSZNI: Mar Ecol 13:285–305CrossRefGoogle Scholar
  84. Lorenz M, Friedl T, Day JG (2005) Perpetual maintenance of actively metabolizing microalgal cultures. In: Andersen RA (ed) Algal culturing techniques, 1st edn. Elsevier, Amsterdam, pp 145–156Google Scholar
  85. Maharana D, Das PB, Verlecar XN, Pise NM, Gauns MU (2015) Oxidative stress tolerance in intertidal red seaweed Hypnea musciformis (Wulfen) in relation to environmental components. Environ Sci Pollut Res Int 22:18741–18749PubMedCrossRefGoogle Scholar
  86. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79:727–747PubMedCrossRefGoogle Scholar
  87. Manilal A, Sujith S, Kiran GS, Selvin J, Shakir C, Gandhimathi R, Lipton AP (2009) Antimicrobial potential and seasonality of red algae collected from the Southwest coast of India tested against shrimp, human and phytopathogens. Ann Microbiol 59:207–219CrossRefGoogle Scholar
  88. Mannino AM, Vaglica V, Oddo E (2014) Seasonal variation in total phenolic content of Dictyopteris polypodioides (Dictyotaceae) and Cystoseira amentacea (Sargassaceae) from the Sicilian coast. Fl Medit 24:39–50CrossRefGoogle Scholar
  89. Marinho-Soriano E, Fonseca PC, Carneiro MAA, Moreira WS (2006) Seasonal variation in the chemical composition of two tropical seaweeds. Bioresour Technol 97:2402–2406PubMedCrossRefGoogle Scholar
  90. Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characterization of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410.  https://doi.org/10.1016/0922-338X(93)90034-6
  91. Mata YN, Torres E, Blázquez ML, Ballester A, González F, Munoz JA (2009) Gold (III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166:612–618PubMedCrossRefGoogle Scholar
  92. Megharaj M, Madhavi DR, Sreenivasulu C, Umamaheswari A, Venkateswarlu K (1994) Biodegradation of methyl parathion by soil isolates of microalgae and cyanobacteria. Bull Environ Contam Toxicol 53:292–297PubMedCrossRefGoogle Scholar
  93. Mehta SK, Gaur JP (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152PubMedCrossRefGoogle Scholar
  94. Michalak I, Chojnacka K (2014) Algal extracts: technology and advances. Eng Life Sci 14:581–591CrossRefGoogle Scholar
  95. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41.  https://doi.org/10.1007/s11157-010-9214-7 CrossRefGoogle Scholar
  96. Mišurcová L (2011) Chemical composition of seaweeds. In: Kim SK (ed) Handbook of marine macroalgae: biotechnology and applied phycology. Wiley, Chichester, pp 173–192Google Scholar
  97. Monteiro C, Castro PL, Malcata FX (2010) Cadmium removal by two strains of Desmodesmus pleiomorphus cells. Water Air Soil Pollut 208:17–27CrossRefGoogle Scholar
  98. Mühling M, Belay A, Whitton BA (2005) Screening Arthrospira (Spirulina) strains for heterotrophy. J Appl Phycol 17:129–135.  https://doi.org/10.1007/s10811-005-7214-8 CrossRefGoogle Scholar
  99. Munier M, Morançais M, Dumay J, Jaouen P (2015) One-step purification of R-phycoerythrin from the red edible seaweed Grateloupia turuturu. J Chromatogr B 992:23–29.  https://doi.org/10.1016/j.jchromb.2015.04.012 CrossRefGoogle Scholar
  100. Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T (2002) Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemoth 50:889–893CrossRefGoogle Scholar
  101. Niu H, Volesky B (1999) Characteristics of gold biosorption from cyanide solution. J Chem Technol Biotechnol 74:778–784CrossRefGoogle Scholar
  102. O’Connell DW, Birkinshaw C, O’Dwyer TF (2008) Heavy metal adsorbents prepared from the modification of cellulose: a review. Bioresour Technol 99:6709–6724PubMedCrossRefGoogle Scholar
  103. Oswald W (2003) My sixty years in applied algology. J Appl Phycol 15:99–106CrossRefGoogle Scholar
  104. Padmini Sreenivasa Rao PP, Karmarkar SM (1986) Antibacterial substances from brown algae II. Efficiency of solvents in the evaluation of antibacterial substances from Sargassum johnstonii Setchell et Gardner. Bot Mar 29:503–507CrossRefGoogle Scholar
  105. Pal A, Paul AK (2008) Microbial extracellular polymeric substances: central elements in heavy metal bioremediation. Indian J Microbiol 48:49–64PubMedPubMedCentralCrossRefGoogle Scholar
  106. Patil G, Raghavarao KSMS (2007) Aqueous two phase extraction for purification of C-phycocyanin. Biochem Eng J 34:156–164.  https://doi.org/10.1016/j.bej.2006.11.026 CrossRefGoogle Scholar
  107. Patra JK, Rath SK, Jena KB, Rathod VK, Thatoi H (2008) Evaluation of antioxidant and antimicrobial activity of seaweed (Sargassum sp.) extract: a study on inhibition of glutathione-S-transferase activity. Turk J Biol 32:119–125Google Scholar
  108. Pavlostathis SG, Jackson GH (2002) Biotransformation of 2,4,6-trinitrotoluene in a continuous-flow Anabaena sp. system. Water Res 36:1699–1706PubMedCrossRefGoogle Scholar
  109. Pesce S, Batisson I, Bardot C, Fajon C, Portelli C, Montuelle B, Bohatier J (2009) Response of spring and summer riverine microbial communities following glyphosate exposure. Ecotoxicol Environ Saf 72:1905–1912PubMedCrossRefGoogle Scholar
  110. Peter P, Phaninatha Sarma A, Azeem ul Hasan MD, Murthy SDS (2010) Studies on the impact of nitrogen starvation on the photosynthetic pigments through spectral properties of the cyanobacterium, Spirulina platensis: identification of target phycobiliprotein under nitrogen chlorosis. Bot Res Int 3:30–34Google Scholar
  111. Pethkar AV, Paknikar KM (1998) Recovery of gold from solutions using Cladosporium cladosporioides biomass beads. J Biotechnol 63:121–136CrossRefGoogle Scholar
  112. Pethkar AV, Kulkarni SK, Paknikar KM (2001) Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides. Bioresour Technol 80:211–215PubMedCrossRefGoogle Scholar
  113. Pirszel J, Pawlik B, Skowroński T (1995) Cation exchange capacity of algae and cyanobacteria: a parameter of their sorption abilities. J Ind Microbiol 14:319–322CrossRefGoogle Scholar
  114. Pradhan S, Rai LC (2000) Optimization of flow rate, initial metal ion concentration and biomass density for maximum removal of Cu2+ by immobilized Microcystis. World J Microbiol Biotechnol 16:579–584CrossRefGoogle Scholar
  115. Prasanna R, Jaiswal P, Kaushik BD (2008) Cyanobacteria as potential options for environment al sustainability – promises and challenges. Indian J Microbiol 48:89–94PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rangsayatorn N, Upatham ES, Kruatrachue M, Pokethitiyook P, Lanza GR (2002) Phytoremediation potential of Spirulina (Arthrospira) platensis: biosorption and toxicity studies of cadmium. Environ Pollut 119:45–53CrossRefGoogle Scholar
  117. Ravi V, Balakumar H (1998) Biodegradation of the C-P bond in glyphosate by the cyanobacterium Anabaena variabilis L. J Sci Ind Res 57:790–794Google Scholar
  118. Rimbau V, Caminis A, Romay C, González PM (1999) Protective effects of C-phycocyanin against kainic acid-induced neuronal damage in rat hippocampus. Neurosci Lett 276:75–78PubMedCrossRefGoogle Scholar
  119. Romay C, Armesto J, Remirez D, Goznález R, Ledon N, Garcia I (1998) Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflamm Res 47:36–41.  https://doi.org/10.1007/s000110050256 CrossRefPubMedGoogle Scholar
  120. Romay C, Goznález R, Ledón N, Remirez D, Rimbau V (2003) C-phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr Protein Pept Sci 4:207–216PubMedCrossRefGoogle Scholar
  121. Romero-Gonzalez ME, Williams CJ, Gardiner PHE, Gurman SJ, Habesh S (2003) Spectroscopic studies of the biosorption of gold(III) by dealginated seaweed waste. Environ Sci Technol 37:4163–4169PubMedCrossRefGoogle Scholar
  122. Rosen BP (2002) Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 133:689–693PubMedCrossRefGoogle Scholar
  123. Ross JA, Kasum CM (2002) Dietary flavonoids: bioavailability, metabolic effects, and safety. Ann Rev Nutr 22:19–34CrossRefGoogle Scholar
  124. Salmon-Monviola J, Gascuel-Odoux C, Garcia F, Tortrat F, Cordier M-O, Masson V, Trépos R (2011) Simulating the effect of technical and environmental constraints on the spatio-temporal distribution of herbicide applications and stream losses. Agric Ecosyst Environ 140:382–394CrossRefGoogle Scholar
  125. Sarada R, Pillai M, Ravishankar G (1999) Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yield, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochem 34:795–801CrossRefGoogle Scholar
  126. Sathyasaikumar KV, Swapna I, Reddy PVB, Murthy CRK, Roy KR, Dutta Gupta A, Senthilkumaran B, Reddanna P (2007) Co-administration of C-Phycocyanin ameliorates thioacetamide-induced hepatic encephalopathy in Wistar rats. J Neurol S 252:64–75. https://doi.org/10.1016/j.jns.2006.10.014Google Scholar
  127. Savvaidis I (1998) Recovery of gold from thiourea solutions using microorganisms. Bio Metal 11:145–151Google Scholar
  128. Schiewer S, Volesky B (2000) Biosorption by marine algae. In: Valdes J (ed) Bioremediation. Springer, Netherlands, pp 139–169CrossRefGoogle Scholar
  129. Sekar S, Chandramohan M (2007) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136.  https://doi.org/10.1007/s10811-007-9188-1 CrossRefGoogle Scholar
  130. Seker A, Shahwan T, Eroglu AE, Yılmaz S, Demirel Z, Dalay MC (2008) Equilibrium, thermodynamic and kinetic studies for the biosorption of aqueous lead(II), cadmium(II) and nickel(II) ions on Spirulina platensis. J Hazard Mater 154:973–980PubMedCrossRefGoogle Scholar
  131. Sharpley A, Wang X (2014) Managing agricultural phosphorus for water quality: lessons from the USA and China. J Environ Sci (China) 26:1770–1782CrossRefGoogle Scholar
  132. Silva-Stenico ME, Vieira FDP, Genuário DB, Silva CSP, Moraes LAB, Fiore MF (2012) Decolorization of textile dyes by cyanobacteria. J Braz Chem Soc 23:1863–1870CrossRefGoogle Scholar
  133. Simeunović J, Bešlin K, Svirčev Z, Kovač D, Babić O (2013) Impact of nitrogen and drought on phycobiliprotein content in terrestrial cyanobacterial strains. J Appl Phycol 25:597–607.  https://doi.org/10.1007/s10811-012-9894-1 CrossRefGoogle Scholar
  134. Simmons P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45:278–285PubMedCrossRefGoogle Scholar
  135. Simonian NA, Coyle JT (1996) Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106.  https://doi.org/10.1146/annurev.pa.36.040196.000503 CrossRefPubMedGoogle Scholar
  136. Singh NK, Parmar A, Sonani RR (2012) Madamwar D Isolation, identification and characterization of novel thermotolerant Oscillatoria sp. N9DM: change in pigmentation profile in response to temperature. Process Biochem 47:2472–2479.  https://doi.org/10.1016/j.procbio.2012.10.009 CrossRefGoogle Scholar
  137. Sloth JK, Wiebe MG, Eriksen NT (2006) Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria. Enzyme Microb Tech 38:168–175. oi:10.1016/j.enzmictec.2005.05.010CrossRefGoogle Scholar
  138. Soni B, Trivedi U, Madamwar D (2008) A novel method of single step hydrophobic interaction chromatography for the purification of phycocyanin from Phormidium fragile and its characterization for antioxidant property. Bioresour Techhnol 99:188–194.  https://doi.org/10.1016/j.biortech.2006.11.010 CrossRefGoogle Scholar
  139. Sørensen L, Hantke A, Eriksen NT (2013) Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. J Sci Food Agric 93:2933–2938.  https://doi.org/10.1002/jsfa.6116 CrossRefPubMedGoogle Scholar
  140. Sousa C, Kotrba P, Ruml T, Cebolla A, De Lorenzo V (1998) Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180(9):2280–2284PubMedPubMedCentralGoogle Scholar
  141. Stadnichuk IN, Krasilnikov PM, Zlenko DV (2015) Cyanobacterial phycobilisomes and phycobiliproteins. Microbiology 84:101–111.  https://doi.org/10.1134/S0026261715020150 CrossRefGoogle Scholar
  142. Steinberg PD (1989) Biogeographical variation in brown algal polyphenolics and other secondary metabolites: comparison between temperate Australasia and North America. Oecologia 78:373–382PubMedCrossRefGoogle Scholar
  143. Stiger V, Deslandes E, Payri CE (2004) Phenolic contents of two brown algae, Turbinaria ornata and Sargassum mangarevense on Tahiti (French Polynesia): interspecific, ontogenic and spatio-temporal variations. Bot Mar 47:402–409CrossRefGoogle Scholar
  144. Studnik H, Liebsch S, Forlani G, Wieczorek D, Kafarski P, Lipok J (2015) Amino polyphosphonates – chemical features and practical uses, environmental durability and biodegradation. New Biotechnol 32:1–6CrossRefGoogle Scholar
  145. Sun L, Wang S, Gong X, Zhao M, Fu X, Wang L (2009) Isolation, purification and characteristics of R-phycoerythrin from a marine macroalga Heterosiphonia japonica. Protein Expr Purif 64:146–154.  https://doi.org/10.1016/j.pep.2008.09.013 CrossRefPubMedGoogle Scholar
  146. Talaraico L, Cortese A (1993) Response of Audouinella saviana (Meneghini) Woelkerling (Nemaliales, Rhodophyta) cultures to monochromatic light. Hydrobiologia 260:477–484.  https://doi.org/10.1007/BF00049059 CrossRefGoogle Scholar
  147. Tandeau de Marsac N, Cohen-Bazire N (1977) Molecular composition of cyanobacterial phycobilisomes. Proc Natl Acad Sci U S A 74:1635–1639CrossRefGoogle Scholar
  148. Telford WG, Hawley T, Subach F, Verkhusha V, Hawley RG (2012) Flow cytometry of fluorescent proteins. Methods 57(3):318–330PubMedCrossRefGoogle Scholar
  149. Thomas NV, Kim SK (2011) Potential pharmacological applications of polyphenolic derivates from marine brown algae. Environ Toxicol Pharmacol 32:325–335PubMedCrossRefGoogle Scholar
  150. Tsekova K, Todorova D, Ganeva S (2010) Removal of heavy metals from industrial wastewater by free and immobilized cells of Aspergillus niger. Int Biodeterior Biodegr 64:447–451CrossRefGoogle Scholar
  151. US_Environmental Protection Agency (2011) Working in partnership with states to address phosphorus and nitrogen pollution through use of a framework for state nutrient reductionsGoogle Scholar
  152. Usher PK, Ross AB, Camargo-Valero MA, Tomlin AS, Gale WF (2014) An overview of the potential environmental impacts of large-scale microalgae cultivation. Biofuels 5:331–349.  https://doi.org/10.1080/17597269.2014.913925 CrossRefGoogle Scholar
  153. Van Mooy BA, Krupke A, Dyhrman ST, Fredricks HF, Frischkorn KR, Ossolinski JE, Repeta DJ, Rouco M, Seewald JD, Sylva SP (2015) Phosphorus cycling. Major role of planktonic phosphate reduction in the marine phosphorus redox cycle. Science 348:783–785PubMedCrossRefGoogle Scholar
  154. Vázquez-Sánches J, Ramón-Gallegos E, Mojica-Villegas A, Madrigal-Bujaidar E, Pérez-Pastén-Borja, Chamorro-Cevallos G (2009) Spirulina maxima and its protein extract protect against hydroxyurea-teratogenic insult in mice. Food Chem Toxicol 47:2785–2789.  https://doi.org/10.1016/j.fct.2009.08.013 CrossRefGoogle Scholar
  155. Veglio F, Beolchini F (1997) Removal of metals by biosorption: a review. Hydrometallurgy 44:301–316CrossRefGoogle Scholar
  156. Vendrell E, Ferraz DG, Sabater C, Carrasco JM (2009) Effect of glyphosate on growth of four freshwater species of phytoplankton: a microplate bioassay. Bull Environ Contam Toxicol 82:538–542PubMedCrossRefGoogle Scholar
  157. Vera MS, Lagomarsino L, Sylvester M, Perez GL, Rodriguez P, Mugni H, Sinistro R, Ferraro M, Bonetto C, Zagarese H, Pizarro H (2010) New evidences of Roundup (glyphosate formulation) impact on the periphyton community and the water quality of freshwater ecosystems. Ecotoxicology 19:710–721PubMedCrossRefGoogle Scholar
  158. Verma SK, Singh SP (1990) Factors regulating copper uptake in cyanobacterium. Curr Microbiol 21:33–37CrossRefGoogle Scholar
  159. Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172CrossRefGoogle Scholar
  160. Volesky B (2007) Biosorption and me. Water Res 41:4017–4029PubMedCrossRefGoogle Scholar
  161. Waldron KJ, Robinson NJ (2009) How do bacterial cells ensure that metalloproteins get the correct metal? Nat Rev Microbiol 6:25–35CrossRefGoogle Scholar
  162. Wells S, Johnson I (1994) Fluorescent Labels for Confocal Microscopy. In: Buetow DE, Stevens JK, Cameron IT, Mills LR, Padilla GM, Trogadis JE Zimmerman AM (eds) Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens. Elsevier, San Diego, pp 101–129CrossRefGoogle Scholar
  163. Wijesinghe WAJP, Jeon YJ (2012) Enzyme-assistant extraction (EAE) of bioactive components: a useful approach for recovery of industrially important metabolites from seaweeds: a review. Fitoterapia 83:6–12CrossRefGoogle Scholar
  164. Williams GM, Kroes R, Munro IC (2000) Safety evaluation and risk assessment of the herbicide roundup and its active ingredient, glyphosate, for humans. Regul Toxicol Pharmacol 31:117–165PubMedCrossRefGoogle Scholar
  165. Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. Plant Physiol 156:1631–1638PubMedPubMedCentralCrossRefGoogle Scholar
  166. Yu J, Yang YF (2008) Physiological and biochemical response of seaweed Gracilaria lemaneiformis to concentration changes of N and P. J Exp Mar Biol Ecol 367:142–148.  https://doi.org/10.1016/j.jembe.2008.09.009 CrossRefGoogle Scholar
  167. Yu G, Shi D, Cai Z, Cong W, Ouyang F (2011) Growth and physiological features of cyanobacterium Anabaena sp. strain PCC 7120 in glucose-mixotrophic culture. Chin J Chem Eng 19:108–115CrossRefGoogle Scholar
  168. Zeraatkar AK, Ahmadzadeh H, Talebi AF, Moheimani NR, McHenry MP (2016) Potential use of algae for heavy metal bioremediation, a critical review. J Environ Manag 181:817–831CrossRefGoogle Scholar
  169. Zern TL, Fernandez ML (2005) Cardioprotective effects of dietary polyphenols. J Nutr 135:2291–2294PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Emilia Niemczyk
    • 1
  • Beata Żyszka-Haberecht
    • 1
  • Damian Drzyzga
    • 1
  • Monika Lenartowicz
    • 1
  • Jacek Lipok
    • 2
  1. 1.Faculty of ChemistryUniversity of OpoleOpolePoland
  2. 2.Faculty of Chemistry, Department of Analytical and Ecological ChemistryOpole UniversityOpolePoland

Personalised recommendations