Economic Aspects of Algae Biomass Harvesting for Industrial Purposes. The Life-Cycle Assessment of the Product

  • Grzegorz SchroederEmail author
  • Beata Messyasz
  • Bogusława Łęska
Part of the Developments in Applied Phycology book series (DAPH, volume 8)


Biomass derived from algae is a valuable raw product for agriculture and the chemical industry. The chemical composition of the algae biomass obtained from the natural environment, culture under natural conditions, and culture in bioreactors determines its application to the energy, fuel, and cosmetic industries. The use of biomass, as well as the extracts derived from biomass, is discussed in regard to the economic aspect and life-cycle assessment. The economic aspects of obtaining biomass algae in the product life cycle are discussed for the bioproducts industry.


Algae biomass Algal bioproducts Economic aspects Application of algae Life-cycle assessment 


  1. Adesanya VO, Cadena E, Scott SA, Smith AG (2014) Life cycle assessment on microalgal biodiesel production using a hybrid cultivation system. Bioresour Technol 163:343–355CrossRefPubMedGoogle Scholar
  2. Agenda 21 (1992) United Nations Division for Sustainable Development. Accessed 10 May 2017
  3. Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL, Antizar-Ladislao B (2014) Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod 75:45–56CrossRefGoogle Scholar
  4. Alassali A, Cybulska I, Brudecki GP, Farzanah R, Thomsen MH (2016) Methods for upstream extraction and chemical characterization of secondary metabolites from algae biomass. Adv Tech Biol Med 4:163. CrossRefGoogle Scholar
  5. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. J Biotechnol 142:64–69CrossRefGoogle Scholar
  6. Antizar-Ladislao B (2014) Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod 75:45–56CrossRefGoogle Scholar
  7. Aresta M, Angela D, Tommasi I (2003) Energy from macro-algae. Fuel Chem Preprints 48:260–261Google Scholar
  8. Aresta M, Dibenedetto A, Barberio G (2005) Utilization of macro-algae for enhanced CO2 fixation and biofuels production: development of a computing software for an LCA Study. Fuel Process Technol 86:1679–1693CrossRefGoogle Scholar
  9. Atkinson G, Dietz S, Neumayer E (eds) (2009). Handbook of sustainable development. Edward Elgar Publishing, CheltenhamGoogle Scholar
  10. Batan L, Quinn J, Willson B, Bradley T (2010) Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol 44:7975–7980CrossRefPubMedGoogle Scholar
  11. Bedoux G, Bourgougnon N (2015) Bioactivity of secondary metabolites from Macroalgae. In: Sahoo D, Seckbach J (eds) The algae world, Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 26. Springer, Dordrecht, pp 391–401CrossRefGoogle Scholar
  12. Beer LL, Boyd ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271CrossRefPubMedGoogle Scholar
  13. Bennion EP, Ginosar DM, Moses J, Agblevor F, Quinn JC (2015) Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways. Appl Energy 154:1062–1071CrossRefGoogle Scholar
  14. Biodigester (2016) Accessed 10 May 2017
  15. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  16. Brentner LB, Eckelman MJ, Zimmerman JB (2011) Combinatorial life cycle assessment to inform process design of industrial production of algal biodiesel. Environ Sci Technol 45:7060–7067CrossRefPubMedGoogle Scholar
  17. Brune DE, Lundquist TJ, Benemann JR (2009) Microalgal biomass for greenhouse gas reductions: potential for replacement of fossil fuels and animal feeds. J Environ Eng 135:1136–1144CrossRefGoogle Scholar
  18. Campbell PK, Beer T, Batten D (2011) Life cycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56CrossRefGoogle Scholar
  19. Cardwell D. (2013) Unilever to buy oil derived from algae from solazyme. The New York TimesGoogle Scholar
  20. Carriquiry MA, Du X, Timilsina GR (2011) Second generation biofuels: Economics and policies. Energy Policy 39:4222–4234CrossRefGoogle Scholar
  21. Chen H, Zhou D, Luo G, Zhang S, Chen J (2015) Macroalgae for biofuels production: progress and perspectives renewable and sustainable. Energy Rev 47:427–437Google Scholar
  22. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefPubMedGoogle Scholar
  23. Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819CrossRefPubMedGoogle Scholar
  24. Community Register of Feed Additives pursuant to Regulation (2003) No 1831/2003. Council Directive 70/524/EEC concerning additives in feedingstuffs – list of authorised additives in feeding stuffs (2004/C 50/01)Google Scholar
  25. Comprehensive Report on Attractive Algae Product Opportunities – Preview (2015) Accessed 10 May 2017
  26. Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23:371–393CrossRefGoogle Scholar
  27. Craigie JS, MacKinnon SL, Walter JA (2008) Liquid seaweed extracts identified using 1H NMR profiles. J Appl Phycol 20:665–671CrossRefGoogle Scholar
  28. Dave A, Huang Y, Rezvani S, McIlveen-Wright D, Novaes M, Hewitt N (2013) Techno-economic assessment of biofuel development by anaerobic digestion of European marine cold-water seaweeds. Bioresour Technol 135:120–127CrossRefPubMedGoogle Scholar
  29. Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energ Combust 31:171–192CrossRefGoogle Scholar
  30. Demirbas MF (2011) Biofuels from algae for sustainable development. Appl Energy 88:3473–3480CrossRefGoogle Scholar
  31. Enzing C (2012) Algae and genetic modification, Research, production and risks. Technopolis Groups, Accessed 10 May 2017
  32. Esquivel-Hernández DA, Ibarra-Garza IP, Rodríguez-Rodríguez J, Cuéllar-Bermúdez SP, Rostro-Alanis MJ, Alemán-Nava GS, García-Pérez JS, Parra-Saldívar R (2017) Green extraction technologies for high-value metabolites from algae: a review. Biofuels Bioprod Biorefin 11:215–231CrossRefGoogle Scholar
  33. European Union (2001) Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the deliberate release into the environment of genetically modified organisms. Accessed 10 May 2017
  34. European Union (2009) Directive 2009/41/EC of the European Parliament and of the Council of 6 May 2009 on the contained use of genetically modified micro-organisms. http://eur-lex.europa. eu/LexUriServ/ Accessed 10 May 2017
  35. Fabrowska J, Łęska B, Schroeder G (2015a) Freshwater Cladophora glomerata as a new potential cosmetic raw material. Chemik 69:491–497Google Scholar
  36. Fabrowska J, Łęska B, Schroeder G, Messyasz B, Pikosz M (2015b) Biomass and extracts of Algae as material for cosmetics. In: Kim S-K, Chojnacka K (eds) Marine Algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 681–706Google Scholar
  37. Fabrowska J, Ibañez E, Łęska B, Herrero M (2016) Supercritical fluid extraction as a tool to valorize underexploited freshwater green algae. Algal Res 19:237–245CrossRefGoogle Scholar
  38. Frank ED, Han J, Palou-Rivera I, Elgowainy A, Wang MQ (2011) Life-cycle analysis of algal lipid fuels with the greet model. Center for Transportation Research, Energy Systems Division, Argonne National Laboratory, Oak RidgeGoogle Scholar
  39. Frank E, Elgowainy A, Han J, Wang Z (2013) Life cycle comparison of hydrothermal liquefaction and lipid extraction pathways to renewable diesel from algae. Mitigat Adapt Strat Glob Chang 18:137–158CrossRefGoogle Scholar
  40. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transestryfication of oils. J Biosci Bioeng 92:405–416CrossRefPubMedGoogle Scholar
  41. Gao X, Yu Y, Wu H (2013) Life cycle energy and carbon footprints of microalgal biodiesel production in Western Australia: a comparison of byproducts utilization strategies. ACS Sustain Chem Eng 1:1371–1380CrossRefGoogle Scholar
  42. Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M (2016) A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sust Energ Rev 54:473–481CrossRefGoogle Scholar
  43. Glas DJ (2015) Government regulation of the uses of genetically modified Algae and other microorganisms in biofuel and bio-based chemical production. In: Prokop A, Bajpai RK, Zappi ME (eds) Algal biorefineries, products and refinery design, vol 2. Springer, International Publishing, Cham, pp 23–61CrossRefGoogle Scholar
  44. Gnansounou E, Raman JK (2016) Life cycle assessment of algae biodiesel and its co-products. Appl Energy 161:300–308CrossRefGoogle Scholar
  45. Godlewska K, Michalak I, Tuhy Ł, Chojnacka K (2016) Plant growth biostimulants based on different methods of seaweed extraction with water. Biomed Res Int 2016:5973760CrossRefPubMedPubMedCentralGoogle Scholar
  46. Górka B, Kucab K, Lipok J, Wieczorek PP (2016) Biologically active compounds in Algae and their application in plant growth stimulation. In: Chojnacka K, Michalak I (eds) Innovative bio-products for agriculture: Algal extracts in products for humans, Animals and Plants. Nova Science Publishers Inc, New York, pp 101–128Google Scholar
  47. Goto M, Wahyudiono KH, Siti M (2015) Extraction of carotenoids and lipids from algae by supercritical CO2 and subcritical dimethyl ether. J Supercrit Fluids 96:245–251CrossRefGoogle Scholar
  48. Grierson S, Strezov V, Bengtsson J (2013) Life cycle assessment of a microalgae biomass cultivation, bio-oil extraction and pyrolysis processing regime. Algal Res 2:299–311CrossRefGoogle Scholar
  49. Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114CrossRefGoogle Scholar
  50. Huang G, Chen F, Wei D, Zhang X, Chen G (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46CrossRefGoogle Scholar
  51. Jambo SA, Abdulla R, Azhar SHM, Marbawi H, Azlanansau J, Ravindra P (2016) A review on thirde generation bioethanol feedstock. Renew Sust Energ Rev 65:756–769CrossRefGoogle Scholar
  52. Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413CrossRefPubMedGoogle Scholar
  53. Jung KA, Lim S-R, Kim Y, Park JM (2013) Potentials of macroalgae as feedstocks for biorefinery. Bioresour Technol 135:182–190CrossRefPubMedGoogle Scholar
  54. Khoo HH, Sharratt PN, Das P, Balasubramanian RK, Naraharisetti PK, Shaik S (2011) Life cycle energy and CO2 analysis of microalgae-to-biodiesel: preliminary results and comparisons. Bioresour Technol 102:5800–5807CrossRefPubMedGoogle Scholar
  55. Kothari R, Buddhi D, Sawhney RL (2008) Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sust Energ Rev 12:553–563CrossRefGoogle Scholar
  56. Kozłowski K, Rój E, Dobrzyńska-Inger A, Kostrzewa D (2016) The analysis of Technical and Economic (TEA) aspects of natural raw materials extraction with supercritical carbon dioxide. In: Chojnacka K, Michalak I (eds) Innovative bio-products for agriculture: Algal extracts in products for humans, animals and plants. Nova Science Publishers Inc, New York, pp 43–72Google Scholar
  57. Kumar S (2015) GM Algae for biofuel production: biosafety and risk assessment. Coll Biosaf Rev 9:52–75Google Scholar
  58. Li Y, Naghdi FG, Garg S, Adarme-Vega TC, Thurecht KJ, Ghafor WA, Tannock S, Schenk PM (2014) A comparative study: the impact of different lipid extraction methods on current microalgal lipid research. Microb Cell Factories 13:14. CrossRefGoogle Scholar
  59. Liu X, Saydah B, Eranki P, Colosi LM, Greg Mitchell B, Rhodes J, Clarens AF (2013) Pilot-scale data provide enhanced estimates of the life cycle energy and emissions profile of algae biofuels produced via hydrothermal liquefaction. Bioresour Technol 148:63–71Google Scholar
  60. Madugu F, Collu M (2016) Parametric analysis for an algal oil production process. Int J Energy Prod Mgmt 1:141–154CrossRefGoogle Scholar
  61. Malik A, Lenzen M, Ralph PJ, Tamburic B (2015) Hybrid life-cycle assessment of algal biofuel production. Bioresour Technol 184:436–443CrossRefPubMedGoogle Scholar
  62. Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sust Energ Rev 10:248–268CrossRefGoogle Scholar
  63. Messyasz B, Łęska B, Fabrowska J, Pikosz M, Cieslak A, Schroeder G (2015a) Effects of organic compounds on the macroalgae culture of Aegagropila linnaei. Open Chem 13:1040–1044Google Scholar
  64. Messyasz B, Łęska B, Fabrowska J, Pikosz M, Roj E, Cieslak A, Schroeder G (2015b) Biomass of freshwater Cladophora as a raw material for agriculture and the cosmetic industry. Open Chem 13:1108–1118Google Scholar
  65. Michalak I, Chojnacka K (2014) Algal extracts: technology and advances. Eng Life Sci 14:581–591CrossRefGoogle Scholar
  66. Michalak I, Tuhy Ł, Chojnacka K (2015) Seaweed extract by microwave assisted extraction as plant growth biostimulant. Open Chem 13:1183–1195Google Scholar
  67. Michalak I, Chojnacka K (2016a) The potential usefulness of a new generation of agro-products based on raw materials of biological origin. Acta Sci Pol Hortorum Cultus 15:97–120Google Scholar
  68. Michalak I, Chojnacka K (2016b) Innovative technology of Algal extracts obtained by supercritical fluid extraction useful in the products for plants, animals and human. In: Chojnacka K, Michalak I (eds) Innovative bio-products for agriculture: Algal extracts in products for humans. Animals and Plants. Nova Science Publishers Inc, New York, pp 1–28Google Scholar
  69. Michalak I, Górka B, Wieczorek PP, Rój E, Lipok J, Łęska B, Messyasz B, Wilk R, Schroeder G, Dobrzyńska-Inger A, Chojnacka K (2016a) Supercritical fluid extraction of algae enhances levels of biologically active compounds promoting plant growth. Eur J Phycol 51:243–252CrossRefGoogle Scholar
  70. Michalak I, Chojnacka K, Dmytryk A, Wilk R, Gramza M, Rój E (2016b) Evaluation of supercritical extracts of Algae as biostimulants of plant growth in field trials. Front Plant Sci 7:1591CrossRefPubMedPubMedCentralGoogle Scholar
  71. Michalak I, Chojnacka K, Saeid A (2017) Plant growth biostimulants, dietary feed supplements and cosmetics formulated with supercritical CO2 Algal extracts. Molecules 22:66. CrossRefGoogle Scholar
  72. Minister of Agriculture (2005) 13 January 2005 on the category of feed materials) (Journal of Laws 25 January 2005) Regulation (EC) No 767/2009 of the European Parliament and of the Council of 13 July 2009 on the placing on the market and use of feed, amending European Parliament and Council Regulation (EC) No 1831/2003 and repealing Council Directive 79/373/EEC, Commission Directive 80/511/EEC, Council Directives 82/471/EEC, 83/228/EEC, 93/74/EEC, 93/113/EC and 96/25/EC and Commission Decision 2004/217/ECGoogle Scholar
  73. Molina GE, Acien F, Garcia CF, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247CrossRefGoogle Scholar
  74. Mubarak M, Shaija A, Suchithra TV (2015) A review on the extraction of lipid from microalgae for biodiesel production. Algal Res 7:117–123CrossRefGoogle Scholar
  75. Oil seed crops, Food and Energy (2016) Accessed 10 May 2017
  76. Passell H, Dhaliwal H, Reno M, Wu B, Amotz AB, Ivry E, Gay M, Czartoski T, Laurin L, Ayer N (2013) Algae biodiesel life cycle assessment using current commercial data. J Environ Manage 129:103–111CrossRefPubMedGoogle Scholar
  77. Pereira CG, Meireles MAA (2010) Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives. Food Bioprocess Technol 3:340–372CrossRefGoogle Scholar
  78. Pharmaceutical law (2001) Polish Pharmaceutical Law. J Laws, No. 53 pos. 533, 6 September 2001Google Scholar
  79. Pikosz M, Messyasz B, Gąbka M (2017) Functional structure of algal mat (Cladophora glomerata) in a freshwater in western Poland. Ecol Indic 74:1–9CrossRefGoogle Scholar
  80. Ponnusamy S, Reddy HK, Muppaneni T, Downes CM, Deng S (2014) Life cycle assessment of biodiesel production from algal bio-crude oils extracted under subcritical water conditions. Bioresour Technol 170:454–461CrossRefPubMedGoogle Scholar
  81. Posten C, Schaub G (2009) Microalgae and terrestrial biomass as source for fuels – a process view. J Biotechnol 142:64–69CrossRefPubMedGoogle Scholar
  82. Priyadarshani I, Rath B (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Utln 3:89–100Google Scholar
  83. Pruvost J, Van Vooren G, Le Gouic B, Couzinet-Mossion A, Legrand J (2011) Systematic investigation of biomass and lipid productivity by microalgae in photobioreactors for biodiesel application. Bioresour Technol 102:150–158CrossRefPubMedGoogle Scholar
  84. Pulz O (2001) Photobioreactors production systems for phototrophic microorganisms. Appl Microbal Biotechnol 57:287–293CrossRefGoogle Scholar
  85. Quinn JC, Ryan D (2015) The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour Technol 184:444–452CrossRefPubMedGoogle Scholar
  86. Quinn JC, Smith TG, Downes CM, Quinn C (2014) Microalgae to biofuels lifecycle assessment-multiple pathway evaluation. Algal Res 4:16–22CrossRefGoogle Scholar
  87. Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of Algae for enhanced biofuel production. Eukaryot Cell 9:486–501CrossRefPubMedPubMedCentralGoogle Scholar
  88. Razon LF, Tan RR (2011) Net energy analysis of the production of biodiesel and biogas from the microalgae: Haematococcus pluvialis and Nannochloropsis. Appl Energy 88:3507–3514CrossRefGoogle Scholar
  89. Renaud SM, Van Thinh L, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214CrossRefGoogle Scholar
  90. Report of the United Nations Conference on Environment and Development (1992) Rio de Janeiro, 3–14 June 1992 (United Nations publication, Sales No. E.93.I.8 and corrigenda), vol. I: Resolutions Adopted by the Conference, resolution 1, annex IGoogle Scholar
  91. Richa K, Buddhi D, Sawhney RL (2008) Comparison of environmental and economic aspects of various hydrogen production methods. Renew Sust Energ Rev 12:553–563CrossRefGoogle Scholar
  92. Rój E, Dobrzyńska-Inger A, Dębczak A, Kostrzewa D, Stępnik K (2015) Algae extract production methods and process optimization. In: Kim S-K, Chojnacka K (eds) Marine Algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 101–121Google Scholar
  93. Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ (2008) A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr Opin Biotech 19:430–436CrossRefPubMedGoogle Scholar
  94. Ruis JS, Olivieri G, de Vree J, Bosma R, Willems P, Reith JH, Eppink MHM, Kleinegris Dorinde MM, Wijffels RH, Barbosa MJ (2016) Towards industrial products from microalgae. Energy Environ Sci 9:3036–3043CrossRefGoogle Scholar
  95. Saeid A, Chojnacka K (2015) Toward production of microalgae in photobioreactors under temperate climate. Chem Eng Res Des 93:377–391CrossRefGoogle Scholar
  96. Sahena F, Zaidul ISM, Jinap S, Karim AA, Abbas KA, Norulaini NAN, Omar AKM (2009) Application of supercritical CO2 in lipid extraction – a review. J Food Eng 95:240–253CrossRefGoogle Scholar
  97. Sayre R (2010) Microalgae: the potential for carbon capture. Bioscience 60:722–727CrossRefGoogle Scholar
  98. Schroeder G, Leska B, Messyasz B, Pikosz M, Fabrowska J (2015a) Extraction of macroalgae biomass for cosmetics industry. Przem Chem 94:405–407Google Scholar
  99. Schroeder G, Łęska B, Fabrowska J, Messyasz B, Pikosz M (2015b) Analysis of green algae extract. In: Kim S-K, Chojnacka K (eds) Marine Algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 81–99Google Scholar
  100. Sharma R, Chisti Y, Banerjee UC (2001) Production, purification, characterization and applications of lipases. Biotechnol Adv 19:627–662CrossRefPubMedGoogle Scholar
  101. Shirvani T, Yan XY, Inderwildi OR, Edwards PP, King DA (2011) Life cycle energy and greenhouse gas analysis for algae-derived biodiesel. Energy Environ Sci 4:3773–3778CrossRefGoogle Scholar
  102. Sho Y, Yuuki K, Hidetaka Y, Kan T, Sousuke I (2017) Development of new carbon resources: production of important chemicals from algal residue. Sci Rep 7(1).
  103. Singh A, Pant D, Olsen SI, Nigam PS (2012) Key issues to consider in microalgae based biodiesel production. Energy Educ Sci Technol A: Energy Sci Res 29:687–700Google Scholar
  104. Slade R, Bauen A (2013) Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy 53:29–38CrossRefGoogle Scholar
  105. Snow AA, Smith VH (2012) Genetically engineered Algae for biofuels: a key role for ecologists. Bioscience 62:765–768CrossRefGoogle Scholar
  106. Sustainable development goals – United Nations (2016) Accessed 10 May 2017
  107. Taelman SE, Sfez S (2015) Environmental Life Cycle Assessment (LCA) of algae production in North West Europe (NWE), Public Output report of the EnAlgae project, Swansea, December 2015, 1–35, Available online at Accessed 10 May 2017
  108. Thiruvenkadam S, Izhar S, Yoshida H, Danquah MK, Harun R (2015) Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production. Appl Energy 154:815–828CrossRefGoogle Scholar
  109. Transforming our word (2015) The 2030 Agenda for sustainable development. United Nations – sustainable development knowledge platform. Retrieved 23 Aug 2015Google Scholar
  110. United Nations Development Programme (2015).World Leaders Adopt Sustainable Development Goals. Retrieved 25 Sept 2015
  111. United Nations Official Document (2016). Un Org. Retrieved 2016–10-18Google Scholar
  112. Van Boxtel AJB, Perez-Lopez P, Breitmayer E, Slegers PM (2015) The potential of optimized process design to advance LCA performance of algae production systems. Appl Energy 154:1122–1127CrossRefGoogle Scholar
  113. Vazquez-Duhalt R, Arredondo-Vega BO (1991) Haloadaptation of the green alga Botryococcus braunii (race a). Photochemistry 30:2919–2925CrossRefGoogle Scholar
  114. Voort MPJ, Vulsteke E, Visser CLM (2015) Marco-economics of Algae products, Public Output report WP2A7.02 of the EnAlgae project. Swansea 2015:1–47Google Scholar
  115. Zhang Y, Hu G, Brown RC (2013) Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis. Environ Res Lett 8:025001. CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Grzegorz Schroeder
    • 1
    Email author
  • Beata Messyasz
    • 2
  • Bogusława Łęska
    • 1
  1. 1.Faculty of ChemistryAdam Mickiewicz University in PoznanPoznanPoland
  2. 2.Faculty of Biology, Department of HydrobiologyAdam Mickiewicz University in PoznanPoznanPoland

Personalised recommendations