Advertisement

Algae Biomass in Animal Production

  • Damian Konkol
  • Wanda Górniak
  • Marita Świniarska
  • Mariusz Korczyński
Chapter
Part of the Developments in Applied Phycology book series (DAPH, volume 8)

Abstract

Constantly increasing populations have forced the producers of food into increasing the scale of their production. Consumers expect that, with the increase in food products, their quality will also improve. This is especially evident in the livestock sector, as the demand for animal protein is systematically increasing. This situation led to the search for innovative products of natural origin that could be used in animal husbandry and breeding. This product could be an alga containing ingredients in its biomass that have a positive impact on animal and human organisms. Not only can algae-based feed additives improve production parameters and animal health, they can also affect the quality of animal products. Several studies have been conducted to develop algae in feed for poultry, pigs, cattle and horses. These studies have shown that the use of algae as feed additives can bring many benefits, due to their unique properties.

Keywords

Algae Feed additives Animal nutrition Biologically active compounds 

References

  1. Adamski M, Kupczyński R, Chladek G, Falta D (2011) Influence of propylene glycol and glycerin in Simmental cows in periparturient period on milk yield and metabolic changes. Arch Tierz 54(3):238–248Google Scholar
  2. Adarme-Vega TC, Thomas-Hall SR, Schenk PM (2014) Towards sustainable sources for omega-3 fatty acids production. Curr Opin Biotechnol 26:14–18CrossRefPubMedGoogle Scholar
  3. Andrews F, Buchanan B, Elliot S, Clariday N, Edwards L (2005) Gastric ulcers in horses. J Anim Sci 83(13_suppl):E18–E21Google Scholar
  4. Baňoch T, Fajt Z, Drabek J, Svoboda M (2010) Iodine and its importance in human and pigs. Veterinarstvi 60(12):690–694Google Scholar
  5. Barclay W, Meager K, Abril J (1994) Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol 6(2):123–129CrossRefGoogle Scholar
  6. Becker E (2007) Micro-algae as a source of protein. Biotechnol Adv 25(2):207–210CrossRefPubMedGoogle Scholar
  7. Bezděková B, Jahn P, Vyskočil M, Plachý J (2005) Prevalence of equine gastric ulceration in Standardbred racehorses in Czech Republic. Acta Vet Brno 74(1):59–65CrossRefGoogle Scholar
  8. Boyd WC, Almodóvar LR, Boyd LG (1966) Agglutinins in marine algae for human erythrocytes. Transfusion 6(1):82–83CrossRefGoogle Scholar
  9. Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56(11):317–333CrossRefPubMedGoogle Scholar
  10. Bruneel C, Lemahieu C, Fraeye I, Ryckebosch E, Muylaert K, Buyse J, Foubert I (2013) Impact of microalgal feed supplementation on omega-3 fatty acid enrichment of hen eggs. J Funct Foods 5(2):897–904CrossRefGoogle Scholar
  11. Cachaldora P, De Blas J, de Blas J, García-Rebollar P, Álvarez C, Méndez J (2005) Short communication. Effects of type and level of supplementation with dietary n-3 fatty acids on yolk fat composition and n-3 fatty acid retention in hen eggs. Span J Agric Res 3(2):209–212CrossRefGoogle Scholar
  12. Chojnacka K, Saeid A, Witkowska Z, Tuhy L (2012) Biologically active compounds in seaweed extracts—the prospects for the application. Open Conf Proc J 1:20–28CrossRefGoogle Scholar
  13. Christaki E, Karatzia M, Bonos E, Florou-Paneri P, Karatzias C (2012) Effect of dietary Spirulina platensis on milk fatty acid profile of dairy cows. Asian J Anim Vet Adv 7:597–604CrossRefGoogle Scholar
  14. Craigie JS (2011) Seaweed extract stimuli in plant science and agriculture. J Appl Phycol 23(3):371–393CrossRefGoogle Scholar
  15. Dobrzański Z, Korczyński M, Chojnacka K, Górecki H, Opaliński S (2008) Influence of organic forms of copper, manganese and iron on bioaccumulation of these metals and zinc in laying hens. J Elem 13(3):309–319Google Scholar
  16. Dolińska B, Opaliński S, Zieliński M, Chojnacka K, Dobrzański Z, Ryszka F (2011) Iodine concentration in fodder influences the dynamics of iodine levels in hen’s egg components. Biol Trace Elem Res 144(1–3):747–752CrossRefPubMedPubMedCentralGoogle Scholar
  17. Drewery M, Sawyer J, Pinchak W, Wickersham T (2014) Effect of increasing amounts of postextraction algal residue on straw utilization in steers. J Anim Sci 92(10):4642–4649CrossRefPubMedGoogle Scholar
  18. Ememe M, Ememe C (2017) Benefits of super food and functional food for companion animals. In: Superfood and functional food-an overview of their processing and utilization. InTech, London, pp 309–322Google Scholar
  19. Fievez V, Boeckaert C, Vlaeminck B, Mestdagh J, Demeyer D (2007) In vitro examination of DHA-edible micro-algae: 2. Effect on rumen methane production and apparent degradability of hay. Anim Feed Sci Technol 136(1):80–95CrossRefGoogle Scholar
  20. Fraeye I, Bruneel C, Lemahieu C, Buyse J, Muylaert K, Foubert I (2012) Dietary enrichment of eggs with omega-3 fatty acids: a review. Food Res Int 48(2):961–969CrossRefGoogle Scholar
  21. Fredriksson S, Elwinger K, Pickova J (2006) Fatty acid and carotenoid composition of egg yolk as an effect of microalgae addition to feed formula for laying hens. Food Chem 99(3):530–537CrossRefGoogle Scholar
  22. Galland-Irmouli A-V, Fleurence J, Lamghari R, Luçon M, Rouxel C, Barbaroux O, Bronowicki J-P, Villaume C, Guéant J-L (1999) Nutritional value of proteins from edible seaweed Palmaria palmata (Dulse). J Nutr Biochem 10(6):353–359CrossRefPubMedGoogle Scholar
  23. Ganesan K, Kumar KS, Rao PS (2011) Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India. Innov Food Sci Emerg 12(1):73–78CrossRefGoogle Scholar
  24. Ginzberg A, Cohen M, Sod-Moriah UA, Shany S, Rosenshtrauch A, Arad S (2000) Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. J Appl Phycol 12(3):325–330CrossRefGoogle Scholar
  25. Gładkowski W, Kiełbowicz G, Chojnacka A, Gil M, Trziszka T, Dobrzański Z, Wawrzeńczyk C (2011) Fatty acid composition of egg yolk phospholipid fractions following feed supplementation of Lohmann Brown hens with humic-fat preparations. Food Chem 126(3):1013–1018CrossRefGoogle Scholar
  26. Gupta S, Abu-Ghannam N (2011) Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg 12(4):600–609CrossRefGoogle Scholar
  27. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energ Rev 14(3):1037–1047CrossRefGoogle Scholar
  28. He M, Hollwich W, Rambeck W (2002) Supplementation of algae to the diet of pigs: a new possibility to improve the iodine content in the meat. J Anim Physiol Anim Nutr 86(3–4):97–104CrossRefGoogle Scholar
  29. Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23(3):543–597CrossRefGoogle Scholar
  30. Holman B, Malau-Aduli A (2013) Spirulina as a livestock supplement and animal feed. J Anim Physiol Anim Nutr 97(4):615–623CrossRefGoogle Scholar
  31. Jiménez JT, O’Connell S, Lyons H, Bradley B, Hall M (2010) Antioxidant, antimicrobial, and tyrosinase inhibition activities of acetone extract of Ascophyllum nodosum. Chem Pap 64(4):434–442CrossRefGoogle Scholar
  32. Kalogeropoulos N, Chiou A, Gavala E, Christea M, Andrikopoulos NK (2010) Nutritional evaluation and bioactive microconstituents (carotenoids, tocopherols, sterols and squalene) of raw and roasted chicken fed on DHA-rich microalgae. Food Res Int 43(8):2006–2013CrossRefGoogle Scholar
  33. Kang K, Park Y, Hwang HJ, Kim SH, Lee JG, Shin H-C (2003) Antioxidative properties of brown algae polyphenolics and their perspectives as chemopreventive agents against vascular risk factors. Arch Pharm Res 26(4):286–293CrossRefPubMedGoogle Scholar
  34. Kassis N, Drake SR, Beamer SK, Matak KE, Jaczynski J (2010) Development of nutraceutical egg products with omega-3-rich oils. LWT-Food Sci Technol 43(5):777–783CrossRefGoogle Scholar
  35. Khozin-Goldberg I, Iskandarov U, Cohen Z (2011) LC-PUFA from photosynthetic microalgae: occurrence, biosynthesis, and prospects in biotechnology. Appl Microbiol Biotechnol 91(4):905CrossRefPubMedGoogle Scholar
  36. Kolanowski W (2007) Długołańcuchowe wielonienasycone kwasy tłuszczowe omega-3 – znaczenie zdrowotne w obniżeniu ryzyka chorób cywilizacyjnych. Bromatol Chem Toksykol 3:229–237Google Scholar
  37. Kole C, Michler CH, Abbott AG, Hall TC (2010) Transgenic crop plants. Springer, BerlinGoogle Scholar
  38. Korczyński M, Opaliński S (2012) Dodatki paszowe jako potencjalna perspektywa dla przemysłu chemicznego. Przem Chem 5:792–795Google Scholar
  39. Korczyński M, Witkowska Z, Opaliński S, Świniarska M, Dobrzański Z (2015) Algae extract as a potential feed additive. In: Marine algae extracts: processes, products, and applications. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 603–626Google Scholar
  40. Korol W (2002) Mineralne dodatki paszowe-regulacje prawne. Pasze Przem 4:18–19Google Scholar
  41. Kostik V, Gjorgjeska B, Bauer B, Filev K (2015) Production of shell eggs enriched with n-3 fatty acids. ISORPHR 5(8):48–51Google Scholar
  42. Kulpys J, Paulauskas E, Pilipavicius V, Stankevicius R (2009) Influence of cyanobacteria Arthrospira (Spirulina) platensis biomass additive towards the body condition of lactation cows and biochemical milk indexes. Agron Res 7:823–835Google Scholar
  43. Kumar M, Kumari P, Trivedi N, Shukla MK, Gupta V, Reddy C, Jha B (2011) Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. J Appl Phycol 23(5):797–810CrossRefGoogle Scholar
  44. Kupczyński R, Janeczek W, Pogoda-Sewerniak K, Dzieciol M, Szoltysik M, Zawadzki W (2011) Wpływ zastosowania alg morskich i oleju rybnego na wydajność, skład mleka oraz parametry biochemiczne krwi krów. Acta Sci Pol, Medicina Veterinaria 10(4):35–46Google Scholar
  45. Kupczyński R, Adamski M, Falta D, Roman A (2012a) The efficiency of propolis in post-colostral dairy calves. Arch Tierzucht 55:315–324Google Scholar
  46. Kupczyński R, Kuczaj M, Szołtysik M, Stefaniak T (2012b) Influence of fish oil, palm oil and glycerol on milk fatty acid composition and metabolism in cows during early lactation. Archiv für Tierzucht 55(6):540–551Google Scholar
  47. Kupczyński R, Piasecki T, Bednarski M (2013) Zioła i propolis jako dodatki funkcjonalne dla przemysłu paszowego. Przem Chem 8(92):1549–1553Google Scholar
  48. Lemahieu C, Bruneel C, Termote-Verhalle R, Muylaert K, Buyse J, Foubert I (2014) Effect of different microalgal n− 3 PUFA supplementation doses on yolk color and n− 3 LC-PUFA enrichment in the egg. Algal Res 6:119–123CrossRefGoogle Scholar
  49. Leonard S, Sweeney T, Pierce K, Bahar B, Lynch B, O’Doherty J (2010) The effects of supplementing the diet of the sow with seaweed extracts and fish oil on aspects of gastrointestinal health and performance of the weaned piglet. Livest Sci 134(1):135–138CrossRefGoogle Scholar
  50. Lewis NM, Seburg S, Flanagan N (2000) Enriched eggs as a source of n-3 polyunsaturated fatty acids for humans. Poult Sci 79(7):971–974CrossRefPubMedGoogle Scholar
  51. López-Alonso M, Rey-Crespo F, Orjales I, Rodríguez-Bermúdez R, Miranda M (2016) Effects of different strategies of mineral supplementation (marine algae alone or combined with rumen boluses) in organic dairy systems. J Anim Physiol Anim Nutr 100(5):836–843CrossRefGoogle Scholar
  52. McDermid KJ, Stuercke B (2003) Nutritional composition of edible Hawaiian seaweeds. J Appl Phycol 15(6):513–524CrossRefGoogle Scholar
  53. Michalak I, Chojnacka K (2008) The application of macroalga Pithophora varia Wille enriched with microelements by biosorption as biological feed supplement for livestock. J Sci Food Agric 88(7):1178–1186CrossRefGoogle Scholar
  54. Michalak I, Chojnacka K, Dobrzański Z, Górecki H, Zielińska A, Korczyński M, Opaliński S (2011) Effect of macroalgae enriched with microelements on egg quality parameters and mineral content of eggs, eggshell, blood, feathers and droppings. J Anim Physiol Anim Nutr 95(3):374–387CrossRefGoogle Scholar
  55. Michalak I, Świniarska M, Korczyński M, Opaliński S, Rój E, Chojnacka K (2016) Supercritical algal extracts as the component of pro-health preparations for animals. In: BIT’s 9th annual world congress of industrial biotechnology, Seoul, South KoreaGoogle Scholar
  56. Mittelman N, Engiles J, Murphy L, Vudathala D, Johnson A (2016) Presumptive iatrogenic microcystin-associated liver failure and encephalopathy in a Holsteiner gelding. J Vet Intern Med 30(5):1747–1751CrossRefPubMedPubMedCentralGoogle Scholar
  57. Moate P, Williams S, Hannah M, Eckard R, Auldist M, Ribaux B, Jacobs J, Wales W (2013) Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J Dairy Sci 96(5):3177–3188CrossRefPubMedGoogle Scholar
  58. Moir T, O’Brien J, Hill S, Waldron L (2016) The influence of feeding a high calcium, algae supplement on gastric ulceration in adult horses. J Appl Anim Nutr 4.  https://doi.org/10.1017/jan.2016.7
  59. Moore-Colyer M, O’gorman DM, Wakefield K (2014) An in vitro investigation into the effects of a marine-derived, multimineral supplement in simulated equine stomach and hindgut environments. J Equine Vet Sci 34(3):391–397CrossRefGoogle Scholar
  60. Murray M, Schusser G, Pipers F, Gross SJ (1996) Factors associated with gastric lesions in Thoroughbred racehorses. Equine Vet J 28(5):368–374CrossRefPubMedGoogle Scholar
  61. Nitsan Z, Mokady S, Sukenik A (1999) Enrichment of poultry products with ω3 fatty acids by dietary supplementation with the alga Nannochloropsis and mantur oil. J Agric Food Chem 47(12):5127–5132CrossRefPubMedGoogle Scholar
  62. Nogradi N, Couetil L, Messick J, Stochelski M, Burgess J (2015) Omega-3 fatty acid supplementation provides an additional benefit to a low-dust diet in the management of horses with chronic lower airway inflammatory disease. J Vet Intern Med 29(1):299–306CrossRefPubMedGoogle Scholar
  63. Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ (2011) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 126(3):1006–1012CrossRefGoogle Scholar
  64. O’Doherty J, Dillon S, Figat S, Callan J, Sweeney T (2010) The effects of lactose inclusion and seaweed extract derived from Laminaria spp. on performance, digestibility of diet components and microbial populations in newly weaned pigs. Anim Feed Sci Technol 157(3):173–180CrossRefGoogle Scholar
  65. O’sullivan A, O’Callaghan Y, O’Grady M, Queguineur B, Hanniffy D, Troy D, Kerry J, O’Brien N (2011) In vitro and cellular antioxidant activities of seaweed extracts prepared from five brown seaweeds harvested in spring from the west coast of Ireland. Food Chem 126(3):1064–1070CrossRefGoogle Scholar
  66. Oke S, McIlwraith C (2010) Review of the economic impact of osteoarthritis and oral joint-health supplements in horses. In: Proceedings of the 56th Annual Convention of the American Association of Equine Practitioners, Baltimore, Maryland, USA, 4–8 December 2010. American Association of Equine Practitioners (AAEP), pp 12–16Google Scholar
  67. Opaliński S, Dolińska B, Korczyński M, Chojnacka K, Dobrzański Z, Ryszka F (2012) Effect of iodine-enriched yeast supplementation of diet on performance of laying hens, egg traits, and egg iodine content. Poult Sci 91(7):1627–1632CrossRefPubMedGoogle Scholar
  68. Pangestuti R, Kim S-K (2011) Biological activities and health benefit effects of natural pigments derived from marine algae. J Funct Foods 3(4):255–266CrossRefGoogle Scholar
  69. Papadopoulos G, Goulas C, Apostolaki E, Abril R (2002) Effects of dietary supplements of algae, containing polyunsaturated fatty acids, on milk yield and the composition of milk products in dairy ewes. J Dairy Res 69(03):357–365CrossRefPubMedGoogle Scholar
  70. Park J, Upadhaya S, Kim I (2015) Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian-Australas J Anim Sci 28(3):391CrossRefPubMedPubMedCentralGoogle Scholar
  71. Raj EDS (2016) UV–VIS and HPLC studies on Amphiroa anceps (Lamarck) Decaisne. Arab J Chem 9:S907–S913CrossRefGoogle Scholar
  72. Rao PS, Mantri VA, Ganesan K (2007) Mineral composition of edible seaweed Porphyra vietnamensis. Food Chem 102(1):215–218CrossRefGoogle Scholar
  73. Reddy CM, Bhat VB, Kiranmai G, Reddy MN, Reddanna P, Madyastha K (2000) Selective inhibition of cyclooxygenase-2 by C-phycocyanin, a biliprotein from Spirulina platensis. Biochem Biophys Res Commun 277(3):599–603CrossRefPubMedGoogle Scholar
  74. Rizzi L, Bochicchio D, Bargellini A, Parazza P, Simioli M (2009) Effects of dietary microalgae, other lipid sources, inorganic selenium and iodine on yolk n-3 fatty acid composition, selenium content and quality of eggs in laying hens. J Sci Food Agric 89(10):1775–1781CrossRefGoogle Scholar
  75. Rupérez P (2002) Mineral content of edible marine seaweeds. Food Chem 79(1):23–26CrossRefGoogle Scholar
  76. Ryckebosch E, Bruneel C, Muylaert K, Foubert I (2012) Microalgae as an alternative source of omega-3 long chain polyunsaturated fatty acids. Lipid Technol 24(6):128–130CrossRefGoogle Scholar
  77. Saeid A, Chojnacka K, Korczyński M, Korniewicz D, Dobrzański Z (2013a) Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for swine. J Appl Phycol 25(2):667–675CrossRefPubMedGoogle Scholar
  78. Saeid A, Chojnacka K, Korczyński M, Korniewicz D, Dobrzański Z (2013b) Effect on supplementation of Spirulina maxima enriched with Cu on production performance, metabolical and physiological parameters in fattening pigs. J Appl Phycol 25(5):1607–1617CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sardi L, Martelli G, Lambertini L, Parisini P, Mordenti A (2006) Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livest Sci 103(1):95–103CrossRefGoogle Scholar
  80. Senthilkumar K, Manivasagan P, Venkatesan J, Kim S-K (2013) Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol 60:366–374CrossRefPubMedGoogle Scholar
  81. Ševčíková S, Skřivan M, Dlouhá G, Koucký M (2006) The effect of selenium source on the performance and meat quality of broiler chickens. Czech J Anim Sci 51(10):449–457CrossRefGoogle Scholar
  82. Simkus A, Oberauskas V, Laugalis J, Želvytė R, Monkevičienė I, Sederevičius A, Šimkienė A, Pauliukas K (2007) The effect of weed Spirulina platensis on the milk production in cows. Vet Zootec 38(60):74–77Google Scholar
  83. Simkus A, Oberauskas V, Zelvyte R, Monkeviciene I, Laugalis J, Sederevicius A, Simkiene A, Juozaitiene V, Juozaitis A, Bartkeviciute Z (2008) The effect of the microalga Spirulina platensis on milk production and some microbiological and biochemical parameters in dairy cows. Paper presented at the Zhivotnov’dni NaukiGoogle Scholar
  84. Sirakov I, Velichkova K, Nikolov G (2012) The effect of algae meal (Spirulina) on the growth performance and carcass parameters of rainbow trout (Oncorhynchus mykiss). J BioSci Biotech:151–156Google Scholar
  85. Skrivan M, Simane J, Dlouhá G, Doucha J (2006) Effect of dietary sodium selenite, Se-enriched yeast and Se-enriched Chlorella on egg Se concentration, physical parameters of eggs and laying hen production. Czech J Anim Sci 51(4):163CrossRefGoogle Scholar
  86. Smet SD (2012) Meat, poultry, and fish composition: strategies for optimizing human intake of essential nutrients. Anim Front 2(4):10–16CrossRefGoogle Scholar
  87. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101(2):87–96CrossRefPubMedGoogle Scholar
  88. Stamey J, Shepherd D, de Veth M, Corl B (2012) Use of algae or algal oil rich in n-3 fatty acids as a feed supplement for dairy cattle. J Dairy Sci 95(9):5269–5275CrossRefPubMedGoogle Scholar
  89. Stengel DB, Connan S, Popper ZA (2011) Algal chemodiversity and bioactivity: sources of natural variability and implications for commercial application. Biotechnol Adv 29(5):483–501CrossRefPubMedGoogle Scholar
  90. Taintor JS, Wright J, Caldwell F, Dymond B, Schumacher J (2014) Efficacy of an extract of blue-green algae in amelioration of lameness caused by degenerative joint disease in the horse. J Equine Vet Sci 34(10):1197–1200CrossRefGoogle Scholar
  91. Tokuşoglu Ö, Üunal M (2003) Biomass nutrient profiles of three microalgae: Spirulina platensis, Chlorella vulgaris, and Isochrisis galbana. J Food Sci 68(4):1144–1148CrossRefGoogle Scholar
  92. Tuhy Ł, Witkowska Z, Saeid A, Chojnacka K (2012) Zastosowanie ekstraktów glonowych w wytwarzaniu nawozów, pasz, żywności i kosmetyków. Przem Chem 5(91):1031–1034Google Scholar
  93. Wongcharoen W, Chattipakorn N (2005) Antiarrhythmic effects of n-3 polyunsaturated fatty acids. Asia Pac J Clin Nutr 14(4):307PubMedGoogle Scholar
  94. Yates CM, Philip CC, Rainger GE (2014) Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther 141(3):272–282CrossRefGoogle Scholar
  95. Yuan YV, Walsh NA (2006) Antioxidant and antiproliferative activities of extracts from a variety of edible seaweeds. Food Chem Toxicol 44(7):1144–1150CrossRefPubMedGoogle Scholar
  96. Zahid PB, Aisha K, Ali A (1995) Green seaweed as component of poultry feed. Bangladesh J Bot 2(24):153–156Google Scholar
  97. Zhang C, Li X, S-k K (2012) Application of marine biomaterials for nutraceuticals and functional foods. Food Sci Biotechnol 21(3):625–631CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Damian Konkol
    • 1
  • Wanda Górniak
    • 1
  • Marita Świniarska
    • 1
  • Mariusz Korczyński
    • 1
  1. 1.Department of Environment Hygiene and Animal WelfareWrocław University of Environmental and Life SciencesWrocławPoland

Personalised recommendations