An Empirical Analysis of User Behavior for P2P IPTV Workloads

  • Mohamed Elhoseny
  • Abdulaziz ShehabEmail author
  • Lobna Osman
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 723)


The interest for video delivery systems over the Internet has been gradually growing up last years. It has already become a major application due to clients’ interest of video content and persistent development of network technologies. Users’ behavior is playing an increasingly crucial role in the performance of such applications. This paper proposes an efficient analysis of the user’s behavior for a long-running P2P IPTV service infrastructure developed and maintained by Lancaster University. The proposed analysis presents remarkable parameters that could be helpful for the service provider to consider for their network design.


P2P Watching behavior User behavior analysis Playback Video duration 


  1. 1.
    Liu, Y., Guo, Y., Liang, C.: A survey on peer-to-peer video streaming systems. Peer-to-Peer Netw. Appl. 1(1), 18–28 (2008)CrossRefGoogle Scholar
  2. 2.
    Youtube Web Site: Accessed 2 Jan 2015
  3. 3.
    Ramzan, N., Park, H., Izquierdo, E.: Video streaming over P2P networks: challenges and opportunities. Image Commun. 27, 401–411 (2012)Google Scholar
  4. 4.
    Zheng, Y., Peng, J., Yu, Q., Huang, D., Chen, Y., Chen, C.: A measurement study on user behavior of P2P VoD system. In: The Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics, CAR 2010, Piscataway, NJ, USA, vol. 3, pp. 373–376, IEEE Press (2010)Google Scholar
  5. 5.
    Liao, X., Jin, H., Yu, L.: A novel data replication mechanism in P2P VoD system. Future Gener. Comput. Syst. 28, 930–939 (2012)CrossRefGoogle Scholar
  6. 6.
    Ma, K.J., Bartoš, R., Bhatia, S.: Review: a survey of schemes for internet-based video delivery. J. Netw. Comput. Appl. 34, 1572–1586 (2011)CrossRefGoogle Scholar
  7. 7.
    Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K.: A measurement study of a large-scale P2P IPTV system. IEEE Trans. Multimedia 9, 1672–1687 (2007)CrossRefGoogle Scholar
  8. 8.
    Almeida, J.M., Krueger, J., Eager, D.L., Vernon, M.K.: Analysis of Educational Media Server Workloads. NOSSDAV, Port Jefferson (2001)CrossRefGoogle Scholar
  9. 9.
    Chesire, M., Wolman, A., Voelker, G., Lavy, H.: Measurement and analysis of a streaming-media workload. In: USENIX Symposium on Internet Technologies and Systems (2001)Google Scholar
  10. 10.
    Wang, Y., Claypool, M., Zuo, M.: An empirical study of realvideo performance across the internet. In: ACM SIGCOMM Internet Measurement Workshop, San Francisco, USA, pp. 295–309 (2001)Google Scholar
  11. 11.
    Loguinov, D., Radha, H.: Measurement study of low-bit rate internet video streaming. In: ACM SIGCOMM Internet Measurement Workshop (IMV) (2001)Google Scholar
  12. 12.
    Costa, C., Cunha, I., Borges, A., Ramos, C., Rocha, M., Almeida, J., Ribeiro-Neto, B.: Analyzing client interactive behavior in streaming media servers. In: Proceedings of 13th ACM International World Wide Web Conference (WWW), New York City, NY, May 2004Google Scholar
  13. 13.
    Cherkasova, L., Gupta, M.: Analysis of enterprise media server workload: access patterns, locality, content evolution and rates of change. IEEE/ACM Trans. Netw. 12, 781–794 (2004)CrossRefGoogle Scholar
  14. 14.
    Acharya, S., Smith, B., Parnes, P.: Characterizing user access to videos on the World Wide Web. In: Proceedings of MMCN, January 2000Google Scholar
  15. 15.
    Arias, J.R., Suarez, F.J., Garcia, D.F., Panieda, X.G., Garcia, V.G.: Evaluation of video server capacity with regard to quality of the service in interactive news-on-demand systems. In: Protocols and Systems for Interactive Distributed Multimedia (PROMSIDMS2002), Coimbra, Portugal. LNCS, vol. 2515 (2002)Google Scholar
  16. 16.
    Veloso, E., Almeida, V., Meira, W., Bestavros, A., Jin, S.: A hierarchical characterization of a live streaming media workload. In: ACM Internet Measurement Workshop (IMV), November 2002Google Scholar
  17. 17.
    Sripanidkulchai, K., Maggs, B., Zhang, H.: An analysis of live streaming workloads on the internet. In: Proceedings of ACM Internet Measurement Conference 2004, Sicily, Italy, October 2004Google Scholar
  18. 18.
    Li, V., Liao, W., Qiu, X., Wong, E.: Performance model of interactive video-on-demand systems. IEEE J. Sel. Areas Commun. 14, 1099–1109 (1996)CrossRefGoogle Scholar
  19. 19.
    Garcá, R., Pañeda, X.G., Garcá, V.G., Melendi, D., Vilas, M.: Statistical characterization of a real video on demand service: user behaviour and streaming-media workload analysis. Simul. Model. Pract. Theory 15(6), 672–689 (2007)CrossRefGoogle Scholar
  20. 20.
    Elkhatib, Y., Mu, M., Race, N.: Dataset on usage of a live & VoD P2P IPTV service. In: Proceedings of the IEEE International Conference on Peer-to-Peer Computing (2014)Google Scholar
  21. 21.
    Elhoseny, H., Elhoseny, M., Abdelrazek, S., Bakry, H., Riad, A.: Utilizing Service Oriented Architecture (SOA) in smart cities. Int. J. Adv. Comput. Technol. (IJACT) 8(3), 77–84 (2016)Google Scholar
  22. 22.
    Elhoseny, M., Yuan, X., Yu, Z., Mao, C., El-Minir, H., Riad, A.: Balancing energy consumption in heterogeneous wireless sensor networks using genetic algorithm. IEEE Commun. Lett. 19(2), 2194–2197 (2015). CrossRefGoogle Scholar
  23. 23.
    Yuan, X., Elhoseny, M., Minir, H., Riad, A.: A genetic algorithm-based, dynamic clustering method towards improved WSN longevity. J. Netw. Syst. Manag. 25(1), 21–46 (2017). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Computers and InformationMansoura UniversityMansouraEgypt
  2. 2.Department of Electronics and Communications EngineeringDelta Higher Institute for Engineering & TechnologyMansouraEgypt

Personalised recommendations