Advertisement

Pairwise Global Sequence Alignment Using Sine-Cosine Optimization Algorithm

  • Mohamed IssaEmail author
  • Aboul Ella Hassanien
  • Ahmed Helmi
  • Ibrahim Ziedan
  • Ahmed Alzohairy
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 723)

Abstract

Pairwise global sequence alignment is a vital process for finding functional and evolutionary similarity between biological sequences. The main usage of it is searching biological databases for finding the origin of unknown sequence. The standard global alignment based on dynamic programming approach which produces the accurate alignment but with extensive execution time. In this paper, Sine-Cosine optimization algorithm was used for accelerating pairwise global alignment with alignment score near one produced by dynamic programming alignment. The reason for using Sine-Cosine optimization is its excellent exploration of the search space. The developed technique was tested on human and mouse protein sequences and its success for finding alignment similarity 75% of that produced by standard technique.

Keywords

Bioinformatics Sequence alignment Pairwise global alignment Meta-heuristics Sine-Cosine optimization 

References

  1. 1.
    Cohen, J.: Bioinformatics—an introduction for computer scientists. ACM Comput. Surv. (CSUR) 36(2), 122–158 (2004)CrossRefGoogle Scholar
  2. 2.
    Setubal, J.C., Meidanis, J.: Introduction to Computational Molecular Biology. PWS Pub, Boston (1997)Google Scholar
  3. 3.
    Di Francesco, V., Garnier, J., Munson, P.: Improving protein secondary structure prediction with aligned homologous sequences. Protein Sci. 5(1), 106–113 (1996)CrossRefGoogle Scholar
  4. 4.
    Feng, D.-F., Doolittle, R.F.: [23] Progressive alignment and phylogenetic tree construction of protein sequences. Methods Enzymol. 183, 375–387 (1990)CrossRefGoogle Scholar
  5. 5.
    Li, L., Khuri, S.: A comparison of DNA fragment assembly algorithms. In: METMBS (2004)Google Scholar
  6. 6.
    Xiong, J.: Essential Bioinformatics. Cambridge University Press, Cambridge (2006)CrossRefGoogle Scholar
  7. 7.
    Sarkar, S., et al.: Hardware accelerators for biocomputing: A survey. In: 2010 Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS). IEEE (2010)Google Scholar
  8. 8.
    Elloumi, M., Issa, M.A.S., Mokaddem, A.: Accelerating pairwise alignment algorithms by using graphics processor units. In: Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data, pp. 969–980 (2013)Google Scholar
  9. 9.
    Issa, M., Helmi, A., Bakr, H.A., Ziedan, I., Alzohairy, A.: Maximizing occupancy of GPU for fast scanning biological database using sequence alignment. J. Appl. Sci. Res. 13(6), 45–51 (2017)Google Scholar
  10. 10.
    Benkrid, K., Liu, Y., Benkrid, A.: A highly parameterized and efficient FPGA-based skeleton for pairwise biological sequence alignment. IEEE Trans. Very Large Scale Integr. VLSI Syst. 17(4), 561–570 (2009)CrossRefGoogle Scholar
  11. 11.
    Ramdas, T., Egan, G.: A survey of FPGAs for acceleration of high performance computing and their application to computational molecular biology. In: 2005 TENCON 2005 IEEE Region 10. IEEE (2005)Google Scholar
  12. 12.
    Xu, B., et al.: DSA: scalable distributed sequence alignment system using SIMD instructions. In: Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. IEEE Press (2017)Google Scholar
  13. 13.
    Rognes, T.: Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation. BMC Bioinform. 12(1), 221 (2011)CrossRefGoogle Scholar
  14. 14.
    BoussaïD, I., Lepagnot, J., Siarry, P.: A survey on optimization metaheuristics. Inf. Sci. 237, 82–117 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)CrossRefGoogle Scholar
  17. 17.
    Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)CrossRefGoogle Scholar
  18. 18.
    Javidy, B., Hatamlou, A., Mirjalili, S.: Ions motion algorithm for solving optimization problems. Appl. Soft Comput. 32, 72–79 (2015)CrossRefGoogle Scholar
  19. 19.
    Kennedy, J.: Particle swarm optimization. In: Neural Networks (1995)Google Scholar
  20. 20.
    Mirjalili, S.: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 89, 228–249 (2015)CrossRefGoogle Scholar
  21. 21.
    El Aziz, M.A., Ewees, A.A., Hassanien, A.E.: Whale optimization algorithm and moth-flame optimization for multilevel thresholding image segmentation. Expert Syst. Appl. 83, 242–256 (2017)CrossRefGoogle Scholar
  22. 22.
    Tharwat, A., Gabel, T., Hassanien, A.E.: Parameter optimization of support vector machine using dragonfly algorithm. In: Hassanien, A.E., Shaalan, K., Gaber, T., Tolba, Mohamed F. (eds.) AISI 2017. AISC, vol. 639, pp. 309–319. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-64861-3_29 CrossRefGoogle Scholar
  23. 23.
    Abd Elfattah, M., Abuelenin, S., Hassanien, A.E., Pan, J.-S.: Handwritten Arabic Manuscript Image Binarization Using Sine Cosine Optimization Algorithm. In: Pan, J.-S., Lin, J.C.-W., Wang, C.-H., Jiang, X.H. (eds.) ICGEC 2016. AISC, vol. 536, pp. 273–280. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-48490-7_32 CrossRefGoogle Scholar
  24. 24.
    Ali, A.F., Hassanien, A.-E.: A Survey of Metaheuristics Methods for Bioinformatics Applications. In: Hassanien, A.-E., Grosan, C., Fahmy Tolba, M. (eds.) Applications of Intelligent Optimization in Biology and Medicine. ISRL, vol. 96, pp. 23–46. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-21212-8_2 CrossRefGoogle Scholar
  25. 25.
    Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)CrossRefGoogle Scholar
  26. 26.
    Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)CrossRefGoogle Scholar
  27. 27.
    Cormen, T.H.: Introduction to Algorithms. MIT press, Cambridge (2009)Google Scholar
  28. 28.
    Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162(3), 705–708 (1982)CrossRefGoogle Scholar
  29. 29.
    Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. 89(22), 10915–10919 (1992)CrossRefGoogle Scholar
  30. 30.
    Mount, D.W.: Comparison of the PAM and BLOSUM amino acid substitution matrices. Cold Spring Harbor Protocols 2008(6) (2008)  https://doi.org/10.1101/pdb.ip59
  31. 31.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mohamed Issa
    • 1
    • 4
    Email author
  • Aboul Ella Hassanien
    • 2
    • 4
  • Ahmed Helmi
    • 1
  • Ibrahim Ziedan
    • 1
  • Ahmed Alzohairy
    • 3
  1. 1.Computer and Systems Engineering Department, Faculty of EngineeringZagazig UniversityZagazigEgypt
  2. 2.Faculty of Computer and InformationCairo UniversityGizaEgypt
  3. 3.Genetics Department, Faculty of AgricultureZagazig UniversityZagazigEgypt
  4. 4.Scientific Research Group in Egypt (SRGE)CairoEgypt

Personalised recommendations