Advertisement

WALK-MAN Humanoid Platform

  • N. G. Tsagarakis
  • F. Negrello
  • M. Garabini
  • W. Choi
  • L. Baccelliere
  • V. G. Loc
  • J. Noorden
  • M. Catalano
  • M. Ferrati
  • L. Muratore
  • P. Kryczka
  • E. Mingo Hoffman
  • A. Settimi
  • A. Rocchi
  • A. Margan
  • S. Cordasco
  • D. Kanoulas
  • A. Cardellino
  • L. Natale
  • H. Dallali
  • J. Malzahn
  • N. Kashiri
  • V. Varricchio
  • L. Pallottino
  • C. Pavan
  • J. Lee
  • A. Ajoudani
  • D. G. Caldwell
  • A. Bicchi
Chapter
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 121)

Abstract

In this chapter we present WALK-MAN, a humanoid platform that has been developed to operate in realistic unstructured environments and demonstrate new skills including powerful manipulation, robust balanced locomotion, high strength capabilities and physical sturdiness. To enable these capabilities, WALK-MAN design and actuation are based on the most recent advancements of Series Elastic Actuation (SEA) drives with unique performance features that differentiate the robot from previous state-of-the-art compliant actuated robots. Physical interaction performance benefits from both active and passive adaptation thanks to WALK-MAN actuation, which combines customized high performance modules with tuned torque/velocity curves and transmission elasticity for high speed adaptation response and motion reactions to disturbances. The WALK-MAN design also includes innovative design optimization features that consider the selection of kinematic structure and the placement of the actuators with respect to the body structure to maximize the robot performance. Physical robustness is ensured with the integration of elastic transmission, proprioceptive sensing and control. WALK-MAN hardware was designed and built in 11 months, and the prototype of the robot was ready 4 months before the DARPA Robotics Challenge (DRC) Finals. The motion generation of WALK-MAN is based on the unified motion generation framework of whole-body locomotion and manipulation (termed loco-manipulation). WALK-MAN is able to execute simple loco-manipulation behaviours synthesized by combining different primitives defining the behaviour of the center of gravity, of the hands, legs and head, the body attitude and posture, and the constrained body parts such as joint limits and contacts. The motion generation framework including the specific motion modules and software architecture are discussed in detail. A rich perception system allows the robot to perceive and generate 3D representations of the environment as well as detect contacts and sense physical interaction force and moments. The operator station that pilots use to control the robot provides a rich pilot interface with different control modes and a number of tele-operated or semi-autonomous command features. The capability of the robot and the performance of the individual motion control and perception modules were validated during the DARPA Robotics Challenge in which the robot was able to demonstrate exceptional physical resilience and execute some of the tasks during the competition.

Keywords

Compliant Series elastic actuation Leg and joint mechanism COMAN humanoid 

Notes

Acknowledgements

The development of the WALK-MAN platform is supported by the WALK-MAN FP7-ICT-2013-10 European Commission project. This work would not have been possible without the major support from the Italian Institute of Technology and the University of Pisa and the great talent skills and incredible commitment and passion of all members of WALK-MAN team.

References

  1. Akachi, K., Kaneko, K., Ota, S., Miyamori, G., Mirata, M., Kajita, S., et al. (2005). Development of humanoid robot HRP-3p. In IEEE-RAS International Conference on Humanoid Robots (pp. 50–55).Google Scholar
  2. Bagheri, M., Ajoudani, A., Lee, J., Caldwell, D. G., & Tsagarakis, N. G. (2015). Kinematic analysis and design considerations for optimal base frame arrangement of humanoid shoulders. In IEEE International Conference on Robotics and Automation (ICRA), Seattle, USA (pp. 2710–2715).Google Scholar
  3. Catalano, M. G., Grioli, G., Farnioli, E., Serio, A., Piazza, C., & Bicchi, A. (2014). Adaptive synergies for the design and control of the Pisa/IIT SoftHand. International Journal of Robotics Research, 33, 768–782.CrossRefGoogle Scholar
  4. Chiacchio, P., Chiaverini, S., Sciavicco, L., & Siciliano, B. (1991). Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy. The International Journal of Robotics Research, 10(4), 410–425.CrossRefGoogle Scholar
  5. De Schutter, J., De Laet, T., Rutgeerts, J., Decré, W., Smits, R., Aertbeliën, E., et al. (2007). Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty. The International Journal of Robotics Research, 26(5), 433–455.CrossRefGoogle Scholar
  6. Englsberger, J., Werner, A., Ott, C., Henze, B., Roa, M. A., Garofalo, G., et al. (2014). Overview of the torque-controlled humanoid robot toro. In IEEE-RAS International Conference on Humanoid Robots (pp. 916–923).Google Scholar
  7. Escande, A., Mansard, N., & Wieber, P.-B. (2014). Hierarchical quadratic programming: Fast online humanoid-robot motion generation. The International Journal of Robotics Research, 33(7), 1006–1028.CrossRefGoogle Scholar
  8. Fang, C., Rocchi, A., Mingo Hoffman, E., Tsagarakis, N. G., & Caldwell, D. G. (2015). Efficient self-collision avoidance based on focus of interest for humanoid robots. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (pp. 1060–1066).Google Scholar
  9. Ferreau, H. J., Kirches, C., Potschka, A., Bock, H. G., & Diehl, M. (2014). qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation, 6(4), 327–363.MathSciNetCrossRefGoogle Scholar
  10. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRefGoogle Scholar
  11. Fok, C.-L., & Sentis, L. (2016). Integration and usage of a ROS-based whole body control software framework. In Robot Operating System (ROS), Studies in Computational Intelligence (pp. 535–563). Springer International Publishing.Google Scholar
  12. Herzog, A., Righetti, L., Grimminger, F., Pastor, P., & Schaal, S. (2014). Balancing experiments on a torque-controlled humanoid with hierarchical inverse dynamics. In Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS‘14) (pp. 981–988).Google Scholar
  13. Hirai, K., Hirose, Y., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid robot. In IEEE ICRA (pp. 1321–1326).Google Scholar
  14. Hirose, M., & Ogawa, K. (2007). Honda humanoid robots development. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 11–19.CrossRefGoogle Scholar
  15. Ito, Y., Nakaoka, T., Urata, J., Nakanishi, Y., Okada, K., & Inaba, M. (2012). Design and development of a tendon-driven and axial-driven hybrid humanoid leg with high-power motor driving system. In Proceedings of 2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 475–480).Google Scholar
  16. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., & Yokoi, K. H. K. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1620–1626).Google Scholar
  17. Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008). Humanoid robot HRP-3. In IEEE IROS (pp. 2471–2478).Google Scholar
  18. Kanoulas, D. (2014). Curved surface patches for rough terrain perception. Ph.D. thesis, CCIS, Northeastern University.Google Scholar
  19. Kanoulas, D., & Vona, M. (2013). Sparse surface modeling with curved patches. In Proceedings of the IEEE ICRA (pp. 4209–4215).Google Scholar
  20. Kanoulas, D., & Vona, M. (2014a). Bio-inspired rough terrain contact patch perception. In Proceedings of the IEEE ICRA (pp. 1719–1724).Google Scholar
  21. Kanoulas, D., & Vona, M. (2014b). The surface patch library (SPL). In The 2014 IEEE ICRA Workshop: MATLAB/Simulink for Robotics Education and Research. http://ccis.neu.edu/research/gpc/spl.
  22. Kanoun, O., Lamiraux, F., & Wieber, P.-B. (2011). Kinematic control of redundant manipulators: Generalizing the task-priority framework to inequality task. IEEE Transactions on Robotics, 27(4), 785–792.CrossRefGoogle Scholar
  23. Khatib, O. (1987). A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Transactions on Robotics and Automation, 3(1), 43–53.CrossRefGoogle Scholar
  24. Laffranchi, M., Tsagarakis, N. G., Cannella, F., & Caldwell, D. G. (2009). Antagonistic and series elastic actuators: A comparative analysis on the energy consumption. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5678–5684). IEEE.Google Scholar
  25. Lohmeier, S., Buschmann, T., Ulbrich, H., & Pfeiffer, F. (2006). Modular joint design for performance enhanced humanoid robot LOLA. In IEEE ICRA (pp. 88–93).Google Scholar
  26. Madgwick, S. O. (2010). An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io and University of Bristol (UK).Google Scholar
  27. Mansard, N., Stasse, O., Evrard, P., & Kheddar, A. (2009). A versatile generalized inverted kinematics implementation for collaborative working humanoid robots: The stack of tasks. In International Conference on Advanced Robotics, 2009 (ICAR 2009) (pp. 1–6).Google Scholar
  28. Metta, G., Fitzpatrick, P., & Natale, L. (2006). YARP: Yet another robot platform. International Journal on Advanced Robotics Systems, 3(1), 43–48.CrossRefGoogle Scholar
  29. Mingo Hoffman, E., Rocchi, A., Tsagarakis, N. G., & Caldwell, D. G. (2016). Robot dynamics constraint for inverse kinematics. In International Symposium on Advances in Robot Kinematics, ARK Grasse, France, June 27–June 30, 2016.Google Scholar
  30. Nagasaka, K., Inaba, M., & Inoue, H. (1999). Stabilization of dynamic walk on a humanoid using torso position compliance control (in Japanese). In Proceedings of 17th Annual Conference of the Robotics Society of Japan (pp. 1193–1194).Google Scholar
  31. Nakamura, Y. (1990). Advanced robotics: Redundancy and optimization (1st ed.). Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.Google Scholar
  32. Nakamura, Y., & Hanafusa, H. (1987). Optimal redundancy control of robot manipulators. The International Journal of Robotics Research, 6(1), 32–42.CrossRefGoogle Scholar
  33. Nakamura, Y., Hanafusa, H., & Yoshikawa, T. (1987). Task-priority based redundancy control of robot manipulators. The International Journal of Robotics Research, 6(2), 3–15.CrossRefGoogle Scholar
  34. Nakanishi, J., Cory, R., Mistry, M., Peters, J., & Schaal, S. (2008). Operational space control: A theoretical and empirical comparison. The International Journal of Robotics Research, 27(6), 737–757.CrossRefGoogle Scholar
  35. Negrello, F., Garabini, M., Catalano, M., Malzahn, J., Caldwell, D., Bicchi, A., et al. (2015). A modular compliant actuator for emerging high performance and fall-resilient humanoids. In IEEE-RAS International Conference on Humanoid Robots (pp. 414–420).Google Scholar
  36. Negrello, F., Garabini, M., Catalano, M. G., Kryczka, P., Choi, W., Caldwell, D. G., et al. (2016). Walk-man humanoid lower body design optimization for enhanced physical performance. In 2016 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1817–1824). IEEE.Google Scholar
  37. Ogura, Y., Aikawa, H., Shimomura, A., Morishima, A., Lim, H., & Takanishi, A. (2006). Development of a new humanoid robot WABIAN-2. In IEEE ICRA (pp. 76–81).Google Scholar
  38. Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. In 2011 IEEE ICRA (pp. 3400–3407).Google Scholar
  39. Paine, N., Mehling, J. S., Holley, J., Radford, N. A., Johnson, G., Fok, C.-L., et al. (2015). Actuator control for the NASA-JSC Valkyrie humanoid robot: A decoupled dynamics approach for torque control of series elastic robots. Journal of Field Robotics, 32(3), 378–396.CrossRefGoogle Scholar
  40. Paris, S., & Durand, F. (2009). A fast approximation of the bilateral filter using a signal processing approach. International Journal of Computer Vision, 81(1), 24–52.CrossRefGoogle Scholar
  41. Park, I., Kim, J., & Oh, J. (2007). Mechanical design of the humanoid robot platform HUBO. Journal of Advanced Robotics, 21(11), 1305–1322.CrossRefGoogle Scholar
  42. Parmiggiani, A., Maggiali, M., Natale, L., Nori, F., Schmitz, A., Tsagarakis, N., et al. (2012). The design of the ICub humanoid robot. International Journal of Humanoid Robotics, 9(04), 1250027.CrossRefGoogle Scholar
  43. Pratt, G., & Williamson, M. (1995). Series elastic actuators. In IEEE IROS (pp. 399–406).Google Scholar
  44. Pratt, J., Koolen, T., De Boer, T., Rebula, J., Cotton, S., Carff, J., et al. (2012). Capturability-based analysis and control of legged locomotion, Part 2: Application to m2v2, a lower-body humanoid. International Journal of Robotics Research, 31, 1117–1133.CrossRefGoogle Scholar
  45. Rocchi, A., Hoffman, E. M., Caldwell, D. G., & Tsagarakis, N. G. (2015). Opensot: A whole-body control library for the compliant humanoid robot coman. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1093–1099).Google Scholar
  46. Roozing, W., Li, Z., Medrano-Cerda, G. A., Caldwell, D. G., & Tsagarakis, N. G. (2016). Development and control of a compliant asymmetric antagonistic actuator for energy efficient mobility. IEEE/ASME Transactions on Mechatronics, 21(2), 1080–1091.CrossRefGoogle Scholar
  47. Roth, H. & Vona, M. (2012). Moving volume KinectFusion. In British Machine Vision Conference (BMVC) (pp. 1–11).Google Scholar
  48. Rusu, R. B., Blodow, N., & Beetz, M. (2009). Fast point feature histograms (FPFH) for 3D registration. In Proceedings of the International Conference on Robotics and Automation (ICRA) (pp. 3212–3217).Google Scholar
  49. Rusu, R. B. & Cousins, S. (2011). 3D is here: Point cloud library (PCL). In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), (pp. 1–4), Shanghai, China.Google Scholar
  50. Saab, L., Ramos, O., Keith, F., Mansard, N., Soueres, P., & Fourquet, J. (2013). Dynamic whole-body motion generation under rigid contacts and other unilateral constraints. IEEE Transactions on Robotics, 29(2), 346–362.CrossRefGoogle Scholar
  51. Sentis, L., Park, J., & Khatib, O. (2010). Compliant control of multicontact and center-of-mass behaviors in humanoid robots. IEEE Transactions on Robotics, 26(3), 483–501.CrossRefGoogle Scholar
  52. Sentis, L., Petersen, J., & Philippsen, R. (2013). Implementation and stability analysis of prioritized whole-body compliant controllers on a wheeled humanoid robot in uneven terrains. Autonomous Robots, 35(4), 301–319.CrossRefGoogle Scholar
  53. Settimi, A., Pavan, C., Varricchio, V., Ferrati, M., Hoffman, E. M., Rocchi, A., et al. (2014). A modular approach for remote operation of humanoid robots in search and rescue scenarios, 8906, 192.Google Scholar
  54. Siciliano, B., Sciavicco, L., Villani, L., & Oriolo, G. (2008). Robotics: Modelling, planning and control (1st ed.). Springer Publishing Company, Inc.Google Scholar
  55. Siciliano, B., & Slotine, J.-J. E. (1991). A general framework for managing multiple tasks in highly redundant robotic systems. In Fifth International Conference on Advanced Robotics, 1991 (91 ICAR). Robots in Unstructured Environments (pp. 1211–1216). IEEE.Google Scholar
  56. Trevor, A. J., Gedikli, S., Rusu, R. B., & Christensen, H. I. (2013). Efficient organized point cloud segmentation with connected components. Semantic Perception Mapping and Exploration (SPME).Google Scholar
  57. Tsagarakis, N., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., et al. (2007). ICub—The design and realization of an open humanoid platform for cognitive and neuroscience research. Journal of Advanced Robotics, Special Issue on Robotic platforms for Research in Neuroscience, 21(10), 1151–1175.CrossRefGoogle Scholar
  58. Tsagarakis, N., Li, Z., Saglia, J., & Caldwell, D. G. (2011). The design of the lower body of the compliant humanoid robot cCub. In IEEE ICRA (pp. 2035–2040).Google Scholar
  59. Tsagarakis, N. G., Cerda, G. M., Li, Z., & Caldwell, D. G. (2013a). Compliant humanoid coman: Optimal joint stiffness tuning for modal frequency control. In ICRA (pp. 665–670).Google Scholar
  60. Tsagarakis, N. G., Morfey, S., Dallali, H., Medrano-Cerda, G. A., & Caldwell, D. G. (2013b). An asymmetric compliant antagonistic joint design for high performance mobility. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 5512–5517). IEEE.Google Scholar
  61. Tsagarakis, N. G., Dallali, H., Negrello, F., Roozing, W., Medrano-Cerda, G. A., & Caldwell, D. G. (2014). Compliant antagonistic joint tuning for gravitational load cancellation and improved efficient mobility. In 2014 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids) (pp. 924–929). IEEE.Google Scholar
  62. Vona, M., & Kanoulas, D. (2011). Curved surface contact patches with quantified uncertainty. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 1439–1446).Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • N. G. Tsagarakis
    • 1
  • F. Negrello
    • 1
  • M. Garabini
    • 2
  • W. Choi
    • 1
  • L. Baccelliere
    • 1
  • V. G. Loc
    • 1
  • J. Noorden
    • 1
  • M. Catalano
    • 2
  • M. Ferrati
    • 2
  • L. Muratore
    • 1
  • P. Kryczka
    • 1
  • E. Mingo Hoffman
    • 1
  • A. Settimi
    • 1
    • 2
  • A. Rocchi
    • 1
    • 2
  • A. Margan
    • 1
  • S. Cordasco
    • 1
  • D. Kanoulas
    • 1
  • A. Cardellino
    • 1
  • L. Natale
    • 1
  • H. Dallali
    • 1
  • J. Malzahn
    • 1
  • N. Kashiri
    • 1
  • V. Varricchio
    • 2
  • L. Pallottino
    • 2
  • C. Pavan
    • 2
  • J. Lee
    • 1
  • A. Ajoudani
    • 1
    • 2
  • D. G. Caldwell
    • 1
  • A. Bicchi
    • 1
    • 2
  1. 1.Istituto Italiano di TecnologiaGenoaItaly
  2. 2.Centro PiaggioUniversita di PisaPisaItaly

Personalised recommendations