Skip to main content

Effects of Ventricular Assist Device Therapies on Renal Function

  • Chapter
  • First Online:
Ventricular-Assist Devices and Kidney Disease

Abstract

Left ventricular assist devices (LVADs) have become an established treatment option for advanced heart failure (HF) refractory to conventional medical therapy. LVAD implantation restores cardiac output, improving hemodynamics and reversing neurohormonal dysregulation. The effect of LVAD support on renal pathophysiology is complex and not well understood. Renal dysfunction (RD) occurs commonly in HF patients. Many develop cardiorenal syndrome (CRS), which is often alleviated following LVAD implantation, while others suffer postimplantation acute kidney injury (AKI). Kidney function following LVAD implantation is an important determinant of clinical outcome, and the presence of RD in LVAD recipients is associated with higher mortality, decreased chances of cardiac transplantation, and risk of requiring long-term dialysis. As the number of LVAD recipients grow and live longer with destination therapy, it is critical to understand the cumulative impact of long-term LVAD support on kidney function. This chapter discusses the effects of LVAD on renal pathophysiology and describes the various renal outcomes of patients following LVAD implantation. Clinical recommendations are made in respect of LVAD candidates who have RD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mao H, Katz N, Kim JC, Day S, Ronco C. Implantable left ventricular assist devices and the kidney. Blood Purif. 2014;37(1):57–66.

    Article  PubMed  Google Scholar 

  2. Park SJ, Tector A, Piccioni W, Raines E, Gelijns A, Moskowitz A, et al. Left ventricular assist devices as destination therapy: a new look at survival. J Thorac Cardiovasc Surg. 2005;129(1):9–17.

    Article  PubMed  Google Scholar 

  3. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33(6):555–64.

    Article  PubMed  Google Scholar 

  4. Felker GM, Rogers JG. Same bridge, new destinations: rethinking paradigms for mechanical cardiac support in heart failure. J Am Coll Cardiol. 2006;47(5):930–2.

    Article  PubMed  Google Scholar 

  5. James KB, McCarthy PM, Jaalouk S, Bravo EL, Betkowski A, Thomas JD, et al. Plasma volume and its regulatory factors in congestive heart failure after implantation of long-term left ventricular assist devices. Circulation. 1996;93(8):1515–9.

    Article  CAS  PubMed  Google Scholar 

  6. James KB, McCarthy PM, Thomas JD, Vargo R, Hobbs RE, Sapp S, et al. Effect of the implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation. 1995;92(9):191–5.

    Article  Google Scholar 

  7. Zimpfer D, Wieselthaler G, Czerny M, Fakin R, Haider D, Zrunek P, et al. Neurocognitive function in patients with ventricular assist devices: a comparison of pulsatile and continuous blood flow devices. ASAIO J. 2006;52(1):24–7.

    Article  PubMed  Google Scholar 

  8. Farrar DJ, Hill J. Recovery of major organ function in patients awaiting heart transplantation with thoratec ventricular assist devices. Thoratec Ventricular Assist Device Principal Investigators. J Heart Lung Transplant. 1993;13(6):1125–32.

    Google Scholar 

  9. Iwashima Y, Yanase M, Horio T, Seguchi O, Murata Y, Fujita T, et al. Effect of pulsatile left ventricular assist system implantation on Doppler measurements of renal hemodynamics in patients with advanced heart failure. Artif Organs. 2012;36(4):353–8.

    Article  PubMed  Google Scholar 

  10. Saito S, Westaby S, Piggot D, Dudnikov S, Robson D, Catarino PA, et al. End-organ function during chronic nonpulsatile circulation. Ann Thorac Surg. 2002;74(4):1080–5.

    Article  PubMed  Google Scholar 

  11. Nemoto M. Experimental evaluation of the influence of complete artificial circulation on renal circulation and tissue metabolism-comparative study of pulsatile vs nonpulsatile circulation. Ann Thorac Cardiovasc Surg. 2003;9(6):355–64.

    PubMed  Google Scholar 

  12. Sezai A, Shiono M, Orime Y, Nakata K, Hata M, Yamada H, et al. Renal circulation and cellular metabolism during left ventricular assisted circulation: comparison study of pulsatile and nonpulsatile assists. Artif Organs. 1997;21(7):830–5.

    Article  CAS  PubMed  Google Scholar 

  13. Si K, Litwak KN, Nichols L, Litwak P, Kameneva MV, Wu Z, et al. Smooth muscle cell hypertrophy of renal cortex arteries with chronic continuous flow left ventricular assist. Ann Thorac Surg. 2003;75(1):178–83.

    Article  Google Scholar 

  14. Ohnishi H, Itoh T, Nishinaka T, Tatsumi E, Fukuda T, Oshikawa M, et al. Morphological changes of the arterial systems in the kidney under prolonged continuous flow left heart bypass. Artif Organs. 2002;26(11):974–9.

    Article  PubMed  Google Scholar 

  15. Ootaki C, Yamashita M, Ootaki Y, Kamohara K, Weber S, Klatte RS, et al. Reduced pulsatility induces periarteritis in kidney: role of the local renin–angiotensin system. J Thorac Cardiovasc Surg. 2008;136(1):150–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Amir O, Radovancevic B, Delgado RM 3rd, Kar B, Radovancevic R, Henderson M, et al. Peripheral vascular reactivity in patients with pulsatile vs axial flow left ventricular assist device support. J Heart Lung Transplant. 2006;25(4):391–4.

    Article  PubMed  Google Scholar 

  17. Westaby S, Bertoni GB, Clelland C, Nishinaka T, Frazier O. Circulatory support with attenuated pulse pressure alters human aortic wall morphology. J Thorac Cardiovasc Surg. 2007;133(2):575–6.

    Article  PubMed  Google Scholar 

  18. Tromp T, de Jonge N, Joles J. Left ventricular assist devices: a kidney’s perspective. Heart Fail Rev. 2015;20(4):519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welp H, Rukosujew A, Tjan TD, Hoffmeier A, Kosek V, Scheld HH, et al. Effect of pulsatile and non-pulsatile left ventricular assist devices on the renin-angiotensin system in patients with end-stage heart failure. Thorac Cardiovasc Surg. 2010;58(Suppl 2):S185–8.

    Article  PubMed  Google Scholar 

  20. Cornwell WK, Tarumi T, Stickford A, Lawley J, Roberts M, Parker R, et al. Restoration of pulsatile flow reduces sympathetic nerve activity among individuals with continuous-flow left ventricular assist devices. Circulation. 2015;132(24):2316–22. https://doi.org/10.1161/CIRCULATIONAHA.115.017647.

    Article  PubMed  Google Scholar 

  21. Miller LW, Pagani FD, Russell SD, John R, Boyle AJ, Aaronson KD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885–96.

    Article  CAS  PubMed  Google Scholar 

  22. Radovancevic B, Vrtovec B, de Kort E, Radovancevic R, Gregoric ID, Frazier O. End-organ function in patients on long-term circulatory support with continuous-or pulsatile-flow assist devices. J Heart Lung Transplant. 2007;26(8):815–8.

    Article  PubMed  Google Scholar 

  23. Sandner SE, Zimpfer D, Zrunek P, Rajek A, Schima H, Dunkler D, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87(4):1072–8.

    Article  PubMed  Google Scholar 

  24. Slaughter MS, Pagani FD, Rogers JG, Miller LW, Sun B, Russell SD, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4):S1–S39.

    Article  PubMed  Google Scholar 

  25. Hasin T, Topilsky Y, Schirger JA, Li Z, Zhao Y, Boilson BA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36.

    Article  PubMed  Google Scholar 

  26. Deo SV, Sharma V, Altarabsheh SE, Hasin T, Dillon J, Shah IK, et al. Hepatic and renal function with successful long-term support on a continuous flow left ventricular assist device. Heart Lung Circ. 2014;23(3):229–33.

    Article  PubMed  Google Scholar 

  27. Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75.

    Article  PubMed  Google Scholar 

  28. Patel UD, Hernandez AF, Liang L, Peterson ED, LaBresh KA, Yancy CW, et al. Quality of care and outcomes among patients with heart failure and chronic kidney disease: a get with the guidelines—heart failure program study. Am Heart J. 2008;156(4):674–81.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kirklin JK, Naftel DC, Kormos RL, Pagani FD, Myers SL, Stevenson LW, et al. Quantifying the effect of cardiorenal syndrome on mortality after left ventricular assist device implant. J Heart Lung Transplant. 2013;32(12):1205–13.

    Article  PubMed  Google Scholar 

  30. Yoshioka D, Sakaguchi T, Saito S, Miyagawa S, Nishi H, Yoshikawa Y, et al. Predictor of early mortality for severe heart failure patients with left ventricular assist device implantation: significance of INTERMACS level and renal function. Circ J. 2012;76(7):1631–8.

    Article  PubMed  Google Scholar 

  31. Raichlin E, Baibhav B, Lowes BD, Zolty R, Lyden ER, Vongooru HR, et al. Outcomes in patients with severe preexisting renal dysfunction after continuous-flow left ventricular assist device implantation. ASAIO J. 2016;62(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  32. Boyle AJ, Ascheim DD, Russo MJ, Kormos RL, John R, Naka Y, et al. Clinical outcomes for continuous-flow left ventricular assist device patients stratified by pre-operative INTERMACS classification. J Heart Lung Transplant. 2011;30(4):402–7.

    Article  PubMed  Google Scholar 

  33. Khot UN, Mishra M, Yamani MH, Smedira NG, Paganini E, Yeager M, et al. Severe renal dysfunction complicating cardiogenic shock is not a contraindication to mechanical support as a bridge to cardiac transplantation. J Am Coll Cardiol. 2003;41(3):381–5.

    Article  PubMed  Google Scholar 

  34. Singh M, Shullo M, Kormos RL, Lockard K, Zomak R, Simon MA, et al. Impact of renal function before mechanical circulatory support on posttransplant renal outcomes. Ann Thorac Surg. 2011;91(5):1348–54.

    Article  PubMed  Google Scholar 

  35. Wilson SR, Mudge GH, Stewart GC, Givertz MM. Evaluation for a ventricular assist device selecting the appropriate candidate. Circulation. 2009;119(16):2225–32.

    Article  PubMed  Google Scholar 

  36. Imamura T, Kinugawa K, Shiga T, Kato N, Endo M, Inaba T, et al. How to demonstrate the reversibility of end-organ function before implantation of left ventricular assist device in INTERMACS profile 2 patients? J Artif Organs. 2012;15(4):395–8.

    Article  PubMed  Google Scholar 

  37. Frazier O, Rose EA, Oz MC, Dembitsky W, McCarthy P, Radovancevic B, et al. Multicenter clinical evaluation of the HeartMate vented electric left ventricular assist system in patients awaiting heart transplantation. J Thorac Cardiovasc Surg. 2001;122(6):1186–95.

    Article  CAS  PubMed  Google Scholar 

  38. Demirozu ZT, Etheridge WB, Radovancevic R, Frazier O. Results of HeartMate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J Heart Lung Transplant. 2011;30(2):182–7.

    Article  PubMed  Google Scholar 

  39. Lok SI, Martina JR, Hesselink T, Rodermans BF, Hulstein N, Winkens B, et al. Single-centre experience of 85 patients with a continuous-flow left ventricular assist device: clinical practice and outcome after extended support. Eur J Cardiothorac Surg. 2013;44(3):e233–8. ezt347

    Article  PubMed  Google Scholar 

  40. Borgi J, Tsiouris A, Hodari A, Cogan CM, Paone G, Morgan JA. Significance of postoperative acute renal failure after continuous-flow left ventricular assist device implantation. Ann Thorac Surg. 2013;95(1):163–9.

    Article  PubMed  Google Scholar 

  41. Aaronson KD, Slaughter MS, Miller LW, McGee EC, Cotts WG, Acker MA, et al. Use of an intrapericardial, continuous flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125(25):3191–200. https://doi.org/10.1161/CIRCULATIONAHA.111.058412.

    Article  PubMed  Google Scholar 

  42. Strueber M, Larbalestier R, Jansz P, Zimpfer D, Fiane AE, Tsui S, et al. Results of the post-market registry to evaluate the heartware left ventricular assist system (ReVOLVE). J Heart Lung Transplant. 2014;33(5):486–91.

    Article  PubMed  Google Scholar 

  43. Naik A, Akhter SA, Fedson S, Jeevanandam V, Rich JD, Koyner JL. Acute kidney injury and mortality following ventricular assist device implantation. Am J Nephrol. 2014;39(3):195–203.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Patel AM, Adeseun GA, Ahmed I, Mitter N, Rame JE, Rudnick MR. Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol. 2013;8(3):484–96.

    Article  PubMed  Google Scholar 

  45. McCarthy PM, Smedira NO, Vargo RL, Goormastic M, Hobbs RE, Starling RC, et al. One hundred patients with the HeartMate left ventricular assist device: evolving concepts and technology. J Thorac Cardiovasc Surg. 1998;115(4):904–12.

    Article  CAS  PubMed  Google Scholar 

  46. Genovese EA, Dew MA, Teuteberg JJ, Simon MA, Bhama JK, Bermudez CA, et al. Early adverse events as predictors of 1-year mortality during mechanical circulatory support. J Heart Lung Transplant. 2010;29(9):981–8.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Alba AC, Rao V, Ivanov J, Ross HJ, Delgado DH. Predictors of acute renal dysfunction after ventricular assist device placement. J Card Fail. 2009;15(10):874–81.

    Article  PubMed  Google Scholar 

  48. Sandner SE, Zimpfer D, Zrunek P, Dunkler D, Schima H, Rajek A, et al. Renal function after implantation of continuous versus pulsatile flow left ventricular assist devices. J Heart Lung Transplant. 2008;27(5):469–73.

    Article  PubMed  Google Scholar 

  49. Topkara VK, Dang NC, Barili F, Cheema FH, Martens TP, George I, et al. Predictors and outcomes of continuous veno-venous hemodialysis use after implantation of a left ventricular assist device. J Heart Lung Transplant. 2006;25(4):404–8.

    Article  PubMed  Google Scholar 

  50. Kaltenmaier B, Pommer W, Kaufmann F, Hennig E, Molzahn M, Hetzer R. Outcome of patients with ventricular assist devices and acute renal failure requiring renal replacement therapy. ASAIO J. 2000;46(3):330–3.

    Article  CAS  PubMed  Google Scholar 

  51. Patel AM, Eduardo Rame J, Rudnick MR. How does the nephrologist manage an LVAD patient on chronic maintenance dialysis? Seminars Dialysis. 2014;27(3):284–8.

    Article  Google Scholar 

  52. Yanagida R, Czer L, Ruzza A, Schwarz E, Simsir S, Jordan S, et al. Use of ventricular assist device as bridge to simultaneous heart and kidney transplantation in patients with cardiac and renal failure. Transplant Proc. 2013;49:1–240.

    Google Scholar 

  53. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    Article  CAS  PubMed  Google Scholar 

  54. Butler J, Geisberg C, Howser R, Portner PM, Rogers JG, Deng MC, et al. Relationship between renal function and left ventricular assist device use. Ann Thorac Surg. 2006;81(5):1745–51.

    Article  PubMed  Google Scholar 

  55. Jacobs S, Droogne W, Waelbers V, KVd B, Bollen H, Geens J, et al. Evolution of renal function after partial and full mechanical support for chronic heart failure. Int J Artif Organs. 2014;37(5):364–70.

    Article  CAS  PubMed  Google Scholar 

  56. Kamdar F, Boyle A, Liao K, Colvin-adams M, Joyce L, John R. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant. 2009;28(4):352–9.

    Article  PubMed  Google Scholar 

  57. Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120(23):2352–7.

    Article  PubMed  Google Scholar 

  58. Aaronson KD, Patel H, Pagani FD. Patient selection for left ventricular assist device therapy. Ann Thorac Surg. 2003;75(6):S29–35.

    Article  PubMed  Google Scholar 

  59. Burnett CM, Duncan JM, Frazier O, Sweeney MS, Vega JD, Radovancevic B. Improved multiorgan function after prolonged univentricular support. Ann Thorac Surg. 1993;55(1):65–71.

    Article  CAS  PubMed  Google Scholar 

  60. Damman K, Masson S, Lucci D, Gorini M, Urso R, Maggioni AP, et al. Progression of renal impairment and chronic kidney disease in chronic heart failure: an analysis from GISSI-HF. J Card Fail. 2016;23(1):2–9.

    Article  PubMed  Google Scholar 

  61. Brisco MA, Coca SG, Chen J, Owens AT, McCauley BD, Kimmel SE, et al. Blood urea nitrogen/creatinine ratio identifies a high-risk but potentially reversible form of renal dysfunction in patients with decompensated heart failure. Circ Heart Fail. 2013;6(2):233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Imamura T, Kinugawa K, Shiga T, Endo M, Kato N, Inaba T, et al. Preoperative levels of bilirubin or creatinine adjusted by age can predict their reversibility after implantation of left ventricular assist device. Circ J. 2013;77(1):96–104.

    Article  CAS  PubMed  Google Scholar 

  63. Brisco MA, Jessup M, Coca S, Kimmel S, Testani JM. Biochemical evidence of liver dysfunction identifies patients likely to have improvement in renal function with mechanical circulatory support: insights from intermacs. J Card Fail. 2012;18(8):S38–S9.

    Google Scholar 

  64. Brisco MA, McCauley BD, Chen J, Parikh CR, Testani JM. Biochemical evidence of mild hepatic dysfunction identifies decompensated heart failure patients with reversible renal dysfunction. J Card Fail. 2013;19(11):739–45.

    Article  CAS  PubMed  Google Scholar 

  65. Brisco MA, Testani JM, Cook JL. Renal dysfunction and chronic mechanical circulatory support: from patient selection to long-term management and prognosis. Curr Opin Cardiol. 2016;31(3):277–86.

    Article  PubMed  Google Scholar 

  66. Pronschinske KB, Qiu S, Wu C, Kato TS, Khawaja T, Takayama H, et al. Neutrophil gelatinase-associated lipocalin and cystatin C for the prediction of clinical events in patients with advanced heart failure and after ventricular assist device placement. J Heart Lung Transplant. 2014;33(12):1215–22.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Campbell MS, Kotlyar DS, Brensinger CM, Lewis JD, Shetty K, Bloom RD, et al. Renal function after orthotopic liver transplantation is predicted by duration of pretransplantation creatinine elevation. Liver Transpl. 2005;11(9):1048–55.

    Article  PubMed  Google Scholar 

  68. Textor SC, McKusick MM. Renal artery stenosis: if and when to intervene. Curr Opin Nephrol Hypertens. 2016;25(2):144–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Labban B, Arora N, Restaino S, Markowitz G, Valeri A, Radhakrishnan J. The role of kidney biopsy in heart transplant candidates with kidney disease. Transplantation. 2010;89(7):887–93.

    Article  PubMed  Google Scholar 

  70. Lampert BC, Eckert C, Weaver S, Scanlon A, Lockard K, Allen C, et al. Blood pressure control in continuous flow left ventricular assist devices: efficacy and impact on adverse events. Ann Thorac Surg. 2014;97(1):139–46.

    Article  PubMed  Google Scholar 

  71. Saritas T, Brandenburg V, Federico G, Gröne H-J, Floege J, Moeller M-J, et al. Glomerulonephritis triggered by a chronically infected left ventricular assist device. Lancet. 2015;386(10010):2363–4.

    Article  PubMed  Google Scholar 

  72. Karamlou T, Welke KF, McMullan DM, Cohen GA, Gelow J, Tibayan FA, et al. Combined heart-kidney transplant improves post-transplant survival compared with isolated heart transplant in recipients with reduced glomerular filtration rate: analysis of 593 combined heart-kidney transplants from the united network organ sharing database. J Thorac Cardiovasc Surg. 2014;147(1):456–61.

    Article  PubMed  Google Scholar 

  73. Cantarovich M, Blydt-Hansen TD, Gill J, Tinckam K, Schiff J, Alwayn I, et al. Canadian forum on combined organ transplantation. Transplantation. 2015;100(6):1339–48. [Epub ahead of print].

    Article  Google Scholar 

  74. Papafragkakis H, Martin P, Akalin E. Combined liver and kidney transplantation. Curr Opin Organ Transplant. 2010;15(3):263–8.

    Article  PubMed  Google Scholar 

  75. Coffin ST, Waguespack DR, Haglund NA, Dwyer JP, Keebler ME. Kidney dysfunction and left ventricular assist device support: a comprehensive perioperative review. Cardiorenal Med. 2015;5:48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This chapter is the result of work supported with resources and the use of facilities at the Baltimore VA Medical Center, MD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ami M. Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patel, A.M., Kapoor, K., Rudnick, M.R. (2018). Effects of Ventricular Assist Device Therapies on Renal Function. In: Desai, C., Cotts, W., Lerma, E., Rudnick, M. (eds) Ventricular-Assist Devices and Kidney Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-74657-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74657-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74656-2

  • Online ISBN: 978-3-319-74657-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics