Advertisement

Understanding Cardiovascular Hemodynamics

  • Mugurel Bazavan
  • Gregory P. Macaluso
  • Sunil Pauwaa
Chapter

Abstract

Understanding heart failure, left ventricular assist devices (LVAD), and the associated cardiorenal syndrome requires an understanding of cardiovascular hemodynamics. This chapter explores the assessment of cardiovascular hemodynamics and how this assessment can be used to guide management. Special attention is given to the assessment and management of advanced heart failure and left ventricular assist devices.

Keywords

CHF Congestive heart failure Hemodynamics LVAD Left ventricular assist device Advanced heart failure 

Abbreviations

cfLVAD

Continuous flow left ventricular assist device

CVP

Central venous pressure

EKG

Electrocardiogram

HF

Heart failure

JVD

Jugular venous distention

LV

Left ventricle

LVAD

Left ventricular assist device

LVEDP

Left ventricular end diastolic pressure

PA

Pulmonary artery

PAC

Pulmonary artery catheter

PCWP

Pulmonary capillary wedge pressure

PH

Pulmonary hypertension

PVR

Pulmonary vascular resistance

RA

Right atrium

RV

Right ventricle

RVAD

Right ventricular assist device

TPG

Transpulmonary gradient

References

  1. 1.
    Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA. 1989;261:884–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rame JE, Dries DL, Drazner MH. The prognostic value of the physical examination in patients with chronic heart failure. Congest Heart Fail. 2003;9:170–175, 178.CrossRefPubMedGoogle Scholar
  3. 3.
    Badgett RG, Lucey CR, Mulrow CD. Can the clinical examination diagnose left-sided heart failure in adults? JAMA. 1997;277:1712–9.CrossRefPubMedGoogle Scholar
  4. 4.
    Drazner MH, Rame JE, Stevenson LW, Dries DL. Prognostic importance of elevated jugular venous pressure and a third heart sound in patients with heart failure. N Engl J Med. 2001;345:574–81.CrossRefPubMedGoogle Scholar
  5. 5.
    Vinayak AG, Levitt J, Gehlbach B, Pohlman AS, Hall JB, Kress JP. Usefulness of the external jugular vein examination in detecting abnormal central venous pressure in critically ill patients. Arch Intern Med. 2006;166:2132–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Joly HR, Weil MH. Temperature of the great toe as an indication of the severity of shock. Circulation. 1969;39:131–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, Stevenson LW. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41:1797–804.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Drazner MH, Hellkamp AS, Leier CV, Shah MR, Miller LW, et al. Value of clinician assessment of hemodynamics in advanced heart failure: the ESCAPE trial. Circ Heart Fail. 2008;1:170–7.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Forssmann W. Die Sondierung des rechten Herzens. Klin Wochenschr. 1929;8:2085.CrossRefGoogle Scholar
  10. 10.
    Cournand AF. Cardiac catheterization: development of the technique, its contributions to experimental medicine, and its initial application in man. Acta Med Scand Suppl. 1975;579:1–32.Google Scholar
  11. 11.
    Cournand AF. Nobel lecture, December 11, 1956. In: Nobel Lectures, Physiology and Medicine 1942–1962. Amsterdam: Elsevier; 1964. p. 529.Google Scholar
  12. 12.
    Chatterjee K, Swan HJC, Ganz W, Gray R, Loebel H, Forrester JS, Chonette D. Use of a balloon-tipped flotation electrode catheter for cardiac monitoring. Am J Cardiol. 1975;36:56–61.CrossRefPubMedGoogle Scholar
  13. 13.
    Forrester JS, Ganz W, Diamond G, McHugh T, Chonette DW, Swan HJ. Thermodilution cardiac output determination with a single flow directed catheter for cardiac monitoring. Am Heart J. 1972;83:306.CrossRefPubMedGoogle Scholar
  14. 14.
    Steimle AE, Stevenson LW, Chelimsky-Fallick C, Fonarow GC, Hamilton MA, Moriguchi JD, Kartashov A, Tillisch JH. Sustained hemodynamic efficacy of therapy tailored to reduce filling pressures in survivors with advanced heart failure. Circulation. 1997;96:1165–72.CrossRefPubMedGoogle Scholar
  15. 15.
    Stevenson LW, Belil D, Grover McKay M, Brunken RC, Schwaiger M, Tillisch JH, Schelbert HR. Effects of afterload reduction on left ventricular volume and mitral regurgitation in severe congestive heart failure. Am J Cardiol. 1987;60:654–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Stevenson LW, Brunken RC, Belil D, Grover-McKay M, Schwaiger M, Schelbert HR, Tillisch JH. Afterload reduction with vasodilators and diuretics decreases mitral regurgitation during upright exercise in advanced heart failure. J Am Coll Cardiol. 1990;15:174–80.CrossRefPubMedGoogle Scholar
  17. 17.
    Gore JM, Goldberg RJ, Spodick DH, et al. A community-wide assessment of the use of pulmonary artery catheters in patients with acute myocardial infarction. Chest. 1987;92:721–7.CrossRefPubMedGoogle Scholar
  18. 18.
    Robin ED. Death by pulmonary artery flow-directed catheter. Time for a moratorium? Chest. 1987;92:727–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Dalen JE, Bone RC. Is it time to pull the pulmonary artery catheter? JAMA. 1996;276:916–8.CrossRefPubMedGoogle Scholar
  20. 20.
    Binanay C, Califf RM, Hasselblad V, O'Connor CM, Shah MR, Sopko G, Stevenson LW, Francis GS, Leier CV, Miller LW, ESCAPE Investigators and ESCAPE Study Coordinators. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294:1625–33.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shah MR, O'Connor CM, Sopko G, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness (ESCAPE): design and rationale. Am Heart J. 2001;141:528–53524.CrossRefPubMedGoogle Scholar
  22. 22.
    Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;128:e240–327.CrossRefPubMedGoogle Scholar
  23. 23.
    Rosenkranz S, Preston IR. Right heart catheterization: best practice and pitfalls in pulmonary hypertension. Eur Respir Rev. 2015;24:642–52.CrossRefPubMedGoogle Scholar
  24. 24.
    Tempe DK, Gandhi A, Datt V, Gupta M, Tomar AS, Rajesh V, Virmani S, Banerjee A. Length of insertion for pulmonary artery catheters to locate different cardiac chambers in patients undergoing cardiac surgery. Br J Anaesth. 2006;97(2):147–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Baim D, Grossman W. Grossman’s cardiac catheterization, angiography and intervention. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2006.Google Scholar
  26. 26.
    Dehmer GJ, Firth BG, Hillis LD. Oxygen consumption in adult patients during cardiac catheterization. Clin Cardiol. 1982;5:436–40.CrossRefPubMedGoogle Scholar
  27. 27.
    Kendrick AH, West J, Papouchado M, Rozkovec A. Direct Fick cardiac output: are assumed values of oxygen consumption acceptable? Eur Heart J. 1988;9:337.CrossRefPubMedGoogle Scholar
  28. 28.
    Cigarrora RG, Lange RA, Williams RH, et al. Underestimation of cardiac output by thermodilution in patients with tricuspid regurgitation. Am J Med. 1989;86(4):417–20.CrossRefGoogle Scholar
  29. 29.
    Van Grondelle AV, Ditchey RV, Groves BM, et al. Thermodilution method overestimates low output in humans. Am J Phys. 1983;245:H690.Google Scholar
  30. 30.
    Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. N Engl J Med. 1999;341:577–85.CrossRefPubMedGoogle Scholar
  31. 31.
    Hollenberg SM, Kavinsky CJ, Parrillo JE. Cardiogenic shock. Ann Intern Med. 1999;131:47–59.CrossRefPubMedGoogle Scholar
  32. 32.
    Stevenson LW, Tillisch JH. Maintenance of cardiac output with normal filling pressures in patients with dilated heart failure. Circulation. 1986;74:1303–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Unverferth DV, Magorien RD, Moschberger ML, Baker PB, Fetters JK, Leier CV. Factors influencing the one-year mortality of dilated cardiomyopathy. Am J Cardiol. 1984;54:831.CrossRefGoogle Scholar
  34. 34.
    Ambrosy AP, Pang PS, Khan S, Konstam MA, Fonarow GC, Traver B, et al. Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the EVEREST trial. Eur Heart J. 2013;34:835–43.CrossRefPubMedGoogle Scholar
  35. 35.
    Fonarow GC, Stevenson LW, Steimle AE, Hamilton MA, Moriguchi JD, Walden JA, et al. Persistently high left-ventricular filling pressures predict mortality despite angiotensin-converting enzyme-inhibition in advanced heart failure. Circulation. 1994;90:488.Google Scholar
  36. 36.
    Fonarow GC, Hamilton MA, Moriguchi J, Creaser JW, Rourke DA. Hemodynamic predictors of clinical outcomes in decompensated advanced heart failure. J Card Fail. 2001;3:13.Google Scholar
  37. 37.
    Adams KF Jr, Fonarow GC, Emerman CL, LeJemtel TH, Costanzo MR, Abraham WT, et al. Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the Acute Decompensated Heart Failure National Registry (ADHERE). Am Heart J. 2005;149:209–16.CrossRefPubMedGoogle Scholar
  38. 38.
    Solomon SD, Dobson J, Pocock S, Skali H, McMurray JJ, Granger CB, et al. Influence of nonfatal hospitalization for heart failure on subsequent mortality in patients with chronic heart failure. Circulation. 2007;116:1482–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Lum HD, Studenski SA, Degenholtz HB, Hardy SE. Early hospital readmission is a predictor of one-year mortality in community-dwelling older Medicare beneficiaries. J Gen Intern Med. 2012;27:1467–74.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Drazner MH, Velez-Martinez M, Ayers CR, et al. Relationship of right- to left-sided ventricular filling pressures in advanced heart failure: insights from the ESCAPE trial. Circ Heart Fail. 2013;6:264–70.CrossRefPubMedGoogle Scholar
  41. 41.
    Campbell P, Drazner MH, Kato M, et al. Mismatch of right- and left-sided filling pressures in chronic heart failure. J Card Fail. 2011;17:561–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, Young JB, Wilson Tang WH. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Grodin JL, Drazner MH, Dupont M, Mullens W, Taylor DO, Starling RC, Wilson Tang WH. A disproportionate elevation in right ventricular filling pressure, in relation to left ventricular filling pressure, is associated with renal impairment and increased mortality in advanced decompensated heart failure. Am Heart J. 2015;169:806–12.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Applegate RJ, Johnston WE, Vinten-Johansen J, et al. Restraining effect of intact pericardium during acute volume loading. Am J Phys. 1992;262:H1725–33.Google Scholar
  45. 45.
    Atherton JJ, Moore TD, Lele SS, et al. Diastolic ventricular interaction in chronic heart failure. Lancet. 1997;349:1720–4.CrossRefPubMedGoogle Scholar
  46. 46.
    Mullens W, Abrahams Z, Skouri H, et al. Elevated intra-abdominal pressure in acute decompensated heart failure: a potential contributor to worsening renal function? J Am Coll Cardiol. 2008;51:300–6.CrossRefGoogle Scholar
  47. 47.
    Nguyen VQ, Gadiraju TV, Patel H, Park M, Le Jemtel TH, Jaiswal A. Intra-abdominal hypertension: an important consideration for diuretic resistance in acute decompensated heart failure. Clin Cardiol. 2016;39(1):37–40.CrossRefPubMedGoogle Scholar
  48. 48.
    Grady KL, Dracup K, Kennedy G, et al. Team management of patients with heart failure: a statement for healthcare professionals from the cardiovascular nursing council of the American Heart Association. Circulation. 2000;102(19):2443–56.CrossRefPubMedGoogle Scholar
  49. 49.
    Nohria A, Tsang SW, Fang JC, Lewis EF, Jarcho JA, Mudge GH, Stevenson LW. Clinical assessment identifies hemodynamic profiles that predict outcomes in patients admitted with heart failure. J Am Coll Cardiol. 2003;41(10):1797–804.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Forrester JS, Diamond GA, Swan HJC. Correlative classification of clinical and hemodynamic function after acute myocardial infarction. Am J Cardiol. 1977;39:137–45.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Forrester JS, Diamond G, Chatterjee K, Swan HJC. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (part I). N Engl J Med. 1976;295:1356–62.CrossRefPubMedGoogle Scholar
  52. 52.
    Forrester JS, Diamond G, Chatterjee K, Swan HJC. Medical therapy of acute myocardial infarction by application of hemodynamic subsets (part II). N Engl J Med. 1976;295:1404–13.CrossRefPubMedGoogle Scholar
  53. 53.
    Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.CrossRefPubMedGoogle Scholar
  54. 54.
    Cooper LB, Mentz RJ, Stevens SR, Felker JM, Lombardi C, Metra M, et al. Hemodynamic predictors of heart failure morbidity and mortality: fluid or flow? J Card Fail. 2016;22:182–9.CrossRefPubMedGoogle Scholar
  55. 55.
    Finch CA, Lenfant C. Oxygen transport in man. N Engl J Med. 1972;286(8):407–15.CrossRefPubMedGoogle Scholar
  56. 56.
    Hanberg JS, Sury K, Wilson FP, et al. Reduced cardiac index is not the dominant driver of renal dysfunction in heart failure. J Am Coll Cardiol. 2016;67(19):2199–208.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Stevenson LW, Dracup KA, Tillisch JH. Efficacy of medical therapy tailored for severe congestive heart failure in patients transferred for urgent cardiac transplantation. Am J Cardiol. 1989;63(7):461–4.CrossRefPubMedGoogle Scholar
  58. 58.
    Stevenson LW, Tillisch JH, Hamilton M, Luu M, Chelimsky-Fallick C, Moriguchi J, et al. Importance of hemodynamic response to therapy in predicting survival with ejection fraction less than or equal to 20% secondary to ischemic or nonischemic dilated cardiomyopathy. Am J Cardiol. 1990;66:1348–54.CrossRefPubMedGoogle Scholar
  59. 59.
    Fang JC, DeMarco T, Givertz MM, Borlaug BA, Lewis GD, Rame JE, Gomberg-Maitland M, Murali S, Frantz RP, McGlothlin D, Horn EM, Benza RL. World Health Organization Pulmonary Hypertension group 2: pulmonary hypertension due to left heart disease in the adult—a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2012;31:913–33.CrossRefPubMedGoogle Scholar
  60. 60.
    Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126:975–90.CrossRefPubMedGoogle Scholar
  61. 61.
    Cooper CJ, Landzberg MJ, Anderson TJ, Charbonneau F, Creager MA, Ganz P, Selwyn AP. Role of nitric oxide in the local regulation of pulmonary vascular resistance in humans. Circulation. 1996;93:266–71.CrossRefPubMedGoogle Scholar
  62. 62.
    Galiè N, Hoeper MM, Humbert M, Torbicki A, Vachiery JL, Barbera JA, Beghetti M, Corris P, Gaine S, Gibbs JS, Gomez-Sanchez MA, Jondeau G, Klepetko W, Opitz C, Peacock A, Rubin L, Zellweger M, Simonneau G, ESC Committee for Practice Guidelines (CPG). Guidelines for the diagnosis and treatment of pulmonary hypertension: the task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30:2493–537.CrossRefPubMedGoogle Scholar
  63. 63.
    Ooi H, Colucci WS, Givertz MM. Endothelin mediates increased pulmonary vascular tone in patients with heart failure: demonstration by direct intrapulmonary infusion of sitaxsentan. Circulation. 2002;106:1618–21.CrossRefPubMedGoogle Scholar
  64. 64.
    Moraes DL, ColucciWS GMM. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation. 2000;102:1718–23.CrossRefPubMedGoogle Scholar
  65. 65.
    Gerges C, Gerges M, Lang MB, Zhang Y, Jakowitsch J, Probst P, Maurer G, Lang IM. Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in “out-of-proportion” pulmonary hypertension. Chest. 2013;14663:758–29.CrossRefGoogle Scholar
  66. 66.
    Stobierska B, Awad H, Michler RE. The evolving management of acute right-sided heart failure in cardiac transplant recipients. J Am Coll Cardiol. 2001;38:923–31.CrossRefGoogle Scholar
  67. 67.
    Addonizio LJ, Gersony WM, Robbins RC, et al. Elevated pulmonary vascular resistance and cardiac transplantation. Circulation. 1987;76(5 Pt 2):V52–5.1.PubMedGoogle Scholar
  68. 68.
    Costard-Jackle A, Fowler MB. Influence of preoperative pulmonary artery pressure on mortality after heart transplantation: testing of potential reversibility of pulmonary hypertension with nitroprusside is useful in defining a high risk group. J Am Coll Cardiol. 1992;19(1):48–54.CrossRefPubMedGoogle Scholar
  69. 69.
    Juilliere Y, Barbier G, Feldmann L, Grentzinger A, Danchin N, Cherrier F. Additional predictive value of both left and right ventricular ejection fractions on long-term survival in idiopathic dilated cardiomyopathy. Eur Heart J. 1997;18:276–80.CrossRefPubMedGoogle Scholar
  70. 70.
    de Groote P, Millaire A, Foucher-Hossein C, Nugue O, Marchandise X, Ducloux G, Lablanche JM. Right ventricular ejection fraction is an independent predictor of survival in patients with moderate heart failure. J Am Coll Cardiol. 1998;32:948–54.CrossRefPubMedGoogle Scholar
  71. 71.
    Di Salvo TG, Mathier M, Semigran MJ, Dec GW. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25:1143–53.CrossRefGoogle Scholar
  72. 72.
    Gavazzi A, Berzuini C, Campana C, Inserra C, Ponzetta M, Sebastiani R, Ghio S, Recusani F. Value of right ventricular ejection fraction in predicting short-term prognosis of patients with severe chronic heart failure. J Heart Lung Transplant. 1997;16:774–85.PubMedGoogle Scholar
  73. 73.
    Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, Arbustini E, Recusani F, Tavazzi L. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37:183–8.CrossRefGoogle Scholar
  74. 74.
    Polak JF, Holman BL, Wynne J, Colucci WS. Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease. J Am Coll Cardiol. 1983;2:217–24.CrossRefPubMedGoogle Scholar
  75. 75.
    Meluzin J, Spinarova L, Hude P, Krejci J, Kincl V, Panovsky R, Dusek L. Prognostic importance of various echocardiographic right ventricular functional parameters in patients with symptomatic heart failure. J Am Soc Echocardiogr. 2005;18:435–44.CrossRefPubMedGoogle Scholar
  76. 76.
    Santambrogio L, Bianchi T, Fuardo M, et al. Right ventricular failure after left ventricular assist device insertion: preoperative risk factors. Interact Cardiovasc Thorac Surg. 2006;5:379–82.CrossRefPubMedGoogle Scholar
  77. 77.
    Fukamachi K, McCarthy PM, Smedira NG, et al. Preoperative risk factors for right ventricular failure after implantable left ventricular assist device insertion. Ann Thorac Surg. 1999;68:2181–4.CrossRefPubMedGoogle Scholar
  78. 78.
    Ochiai Y, McCarthy PM, Smedira NG, et al. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation. 2002;106(12 Suppl 1):I198–202.PubMedGoogle Scholar
  79. 79.
    Kormos RL, Teuteberg JJ, Pagani FD, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139:1316–24.CrossRefGoogle Scholar
  80. 80.
    Aaronson KD, Slaughter MS, Miller LW, et al. Use of an intrapericardial, continuous-flow, centrifugal pump in patients awaiting heart transplantation. Circulation. 2012;125:3191–200.CrossRefPubMedGoogle Scholar
  81. 81.
    Slaughter MS, Rogers JG, Milano CA, et al. Advanced heart failure treated with continuous flow left ventricular assist device. N Engl J Med. 2009;361:2241–51.CrossRefPubMedGoogle Scholar
  82. 82.
    Kirklin JK, Naftel DC, Pagani FD, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33:555–64.CrossRefPubMedGoogle Scholar
  83. 83.
    Moazami N, Fukamachi K, Kobayashi M, et al. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32:1–11.CrossRefPubMedGoogle Scholar
  84. 84.
    Lalonde SD, Alba AC, Rigobon A, et al. Clinical differences between continuous flow ventricular assist devices: a comparison between HeartMate II and HeartWare HVAD. J Card Surg. 2013;28:604–10.CrossRefPubMedGoogle Scholar
  85. 85.
    Burkhoff D, Sayer G, Doshi D, Uriel N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol. 2015;66(23):2663–74.CrossRefPubMedGoogle Scholar
  86. 86.
    Uriel N, Sayer G, Addetia K, Fedson S, et al. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail. 2016;4(3):208–17.CrossRefPubMedGoogle Scholar
  87. 87.
    Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with the use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447.CrossRefPubMedGoogle Scholar
  88. 88.
    Drazner MH, Hamilton MA, Fonarow G, et al. Relationship between right and left-sided filling pressures in 1000 patients with advanced heart failure. J Heart Lung Transplant. 1999;18:1126–32.CrossRefPubMedGoogle Scholar
  89. 89.
    Drazner MH, Brown RN, Kaiser PA, et al. Relationship of right- and left-sided filling pressures in patients with advanced heart failure: a 14-year multi-institutional analysis. J Heart Lung Transplant. 2012;31:67–72.CrossRefPubMedGoogle Scholar
  90. 90.
    Patel CB, DeVore AD, Felker GM, Wojdyla DM, Hernandez AF, Milano CA, et al. Characteristics and outcomes of patients with heart failure and discordant findings by right-sided heart catheterization and cardiopulmonary exercise testing. Am J Cardiol. 2014;114:1059–64.CrossRefPubMedGoogle Scholar
  91. 91.
    Methvin A, Georgiopoulou VV, Kalogeropoulos AP, Malik A, Anarado P, Chowdhury M, et al. Usefulness of cardiac index and peak exercise oxygen consumption for determining priority for cardiac transplantation. Am J Cardiol. 2010;105:1353–5.CrossRefPubMedGoogle Scholar
  92. 92.
    Myers J, Wong M, Adhikarla C, Boga M, Challa S, Abella J, Ashley EA. Cardiopulmonary and noninvasive hemodynamic responses to exercise predict outcomes in heart failure. J Card Fail. 2013;19:101–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Kandel G, Aberman A. Mixed venous oxygen saturation. Its role in the assessment of the critically ill patient. Arch Intern Med. 1983;143(7):1400–2.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Mugurel Bazavan
    • 1
  • Gregory P. Macaluso
    • 1
    • 2
    • 3
  • Sunil Pauwaa
    • 2
    • 4
  1. 1.Advanced Heart Failure and Transplant CardiologyAdvocate Illinois Masonic Medical CenterChicagoUSA
  2. 2.University of Illinois at ChicagoChicagoUSA
  3. 3.Heart Care Centers of IllinoisPalos ParkUSA
  4. 4.Advanced Heart Failure and Transplant CardiologyAdvocate Christ Medical Center/Advocate Heart InstituteOak LawnUSA

Personalised recommendations