Advertisement

Renal Replacement Therapies in Patients with Left Ventricular Assist Devices

  • Amanda K. Leonberg-Yoo
  • J. Eduardo Rame
  • Michael R. Rudnick
Chapter

Abstract

Increasing use of implantable left ventricular assist devices (LVADs) is occurring as a bridge to transplant or as a destination therapy in individuals with dual heart and kidney organ dysfunction. LVAD recipients who develop kidney failure are associated with increased adverse outcomes, particularly those who require maintenance dialysis. Challenges unique to this LVAD population with kidney failure include dialysis modality selection, management of dialysis access, and hemodynamic monitoring during maintenance dialysis, Dual heart–kidney transplant may also be considered in a subgroup, although survival outcomes are similar to heart transplant alone. It is necessary for the nephrologist to understand the basic management of an LVAD recipient in clinical practice, as it pertains to kidney dysfunction, dialysis needs, and transplant considerations.

Keywords

Renal replacement therapy Left ventricular assist device Continuous renal replacement therapy Hemodialysis Peritoneal dialysis Combined heart and kidney transplant 

References

  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360.CrossRefGoogle Scholar
  2. 2.
    Roger VL. Epidemiology of heart failure. Circ Res. 2013;113(6):646–59.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Patel UD, Hernandez AF, Liang L, et al. Quality of care and outcomes among patients with heart failure and chronic kidney disease: a get with the guidelines—heart failure program study. Am Heart J. 2008;156(4):674–81.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Park SJ, Tector A, Piccioni W, et al. Left ventricular assist devices as destination therapy: a new look at survival. J Thorac Cardiovasc Surg. 2005;129(1):9–17.CrossRefPubMedGoogle Scholar
  5. 5.
    Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.CrossRefPubMedGoogle Scholar
  6. 6.
    Kirklin JK, Naftel DC, Pagani FD, et al. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–504.CrossRefPubMedGoogle Scholar
  7. 7.
    Stack AG, Mohammed A, Hanley A, Mutwali A, Nguyen H. Survival trends of US dialysis patients with heart failure: 1995 to 2005. Clin J Am Soc Nephrol. 2011;6(8):1982–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Patel AM, Adeseun GA, Ahmed I, Mitter N, Rame JE, Renal RMR. Failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol. 2013;8(3):484–96.CrossRefPubMedGoogle Scholar
  9. 9.
    Kirklin JK, Naftel DC, Kormos RL, et al. Quantifying the effect of cardiorenal syndrome on mortality after left ventricular assist device implant. J Heart Lung Transplant. 2013;32(12):1205–13.CrossRefPubMedGoogle Scholar
  10. 10.
    Allen LA, Stevenson LW, Grady KL, et al. Decision making in advanced heart failure: a scientific statement from the American Heart Association. Circulation. 2012;125(15):1928–52.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sandner SE, Zimpfer D, Zrunek P, et al. Renal function after implantation of continuous versus pulsatile flow left ventricular assist devices. J Heart Lung Transplant. 2008;27(5):469–73.CrossRefPubMedGoogle Scholar
  12. 12.
    Sandner SE, Zimpfer D, Zrunek P, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87(4):1072–8.CrossRefPubMedGoogle Scholar
  13. 13.
    Lok SI, Martina JR, Hesselink T, et al. Single-centre experience of 85 patients with a continuous-flow left ventricular assist device: clinical practice and outcome after extended support. Eur J Cardiothorac Surg. 2013;44(3):e233–8.CrossRefPubMedGoogle Scholar
  14. 14.
    Hasin T, Topilsky Y, Schirger JA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36.CrossRefPubMedGoogle Scholar
  15. 15.
    Deo SV, Sharma V, Altarabsheh SE, et al. Hepatic and renal function with successful long-term support on a continuous flow left ventricular assist device. Heart Lung Circ. 2014;23(3):229–33.CrossRefPubMedGoogle Scholar
  16. 16.
    Florescu MC, Sacks AR, Um JY. Cardiac assist devices and hemodialysis catheter procedures—what do the nephrologists need to know? Semin Dial. 2015;28(6):670–5.CrossRefPubMedGoogle Scholar
  17. 17.
    Amir O, Radovancevic B, Delgado RM 3rd, et al. Peripheral vascular reactivity in patients with pulsatile vs axial flow left ventricular assist device support. J Heart Lung Transplant. 2006;25(4):391–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Dikow R, Schwenger V, Zeier M, Ritz E. Do AV fistulas contribute to cardiac mortality in hemodialysis patients? Semin Dial. 2002;15(1):14–7.CrossRefPubMedGoogle Scholar
  19. 19.
    Konner K, Nonnast-Daniel B, Ritz E. The arteriovenous fistula. J Am Soc Nephrol. 2003;14(6):1669–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Calenda BW, Smietana J, Casagrande L. Long-term hemodialysis via Arteriovenous fistula in patients with continuous-flow left ventricular assist devices. Artif Organs. 2016;40(7):712.CrossRefPubMedGoogle Scholar
  21. 21.
    Schaefers JF, Ertmer C. Native arteriovenous fistula placement in three patients after implantation of a left ventricular assist device with non-pulsatile blood flow. Hemodial Int. 2017;21:E54–7.CrossRefPubMedGoogle Scholar
  22. 22.
    Chin AI, Tong K, JP MV. Successful hemodialysis arteriovenous fistula creation in a patient with continuous-flow left ventricular assist device support. Am J Kidney Dis. 2017;69(2):314–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Sasson T, Wing RE, Foster TH, Kashyap R, Butani D, Waldman DL. Assisted maturation of native fistula in two patients with a continuous flow left ventricular assist device. J Vasc interv Radiol. 2014;25(5):781–3.CrossRefPubMedGoogle Scholar
  24. 24.
    Frazier OH, Gemmato C, Myers TJ, et al. Initial clinical experience with the HeartMate II axial-flow left ventricular assist device. Tex Heart Inst J. 2007;34(3):275–81.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Slaughter MS, Pagani FD, Rogers JG, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4 Suppl):S1–39.CrossRefPubMedGoogle Scholar
  26. 26.
    Griffith BP, Kormos RL, Borovetz HS, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–20; discussion S4–6CrossRefPubMedGoogle Scholar
  27. 27.
    Lampert BC, Eckert C, Weaver S, et al. Blood pressure control in continuous flow left ventricular assist devices: efficacy and impact on adverse events. Ann Thorac Surg. 2014;97(1):139–46.CrossRefPubMedGoogle Scholar
  28. 28.
    Teuteberg JJ, Slaughter MS, Rogers JG, et al. The HVAD left ventricular assist device: risk factors for neurological events and risk mitigation strategies. JACC Heart Fail. 2015;3(10):818–28.CrossRefPubMedGoogle Scholar
  29. 29.
    Bennett MK, Roberts CA, Dordunoo D, Shah A, Russell SD. Ideal methodology to assess systemic blood pressure in patients with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2010;29(5):593–4.CrossRefPubMedGoogle Scholar
  30. 30.
    Lanier GM, Orlanes K, Hayashi Y, et al. Validity and reliability of a novel slow cuff-deflation system for noninvasive blood pressure monitoring in patients with continuous-flow left ventricular assist device. Circ Heart Fail. 2013;6(5):1005–12.CrossRefPubMedGoogle Scholar
  31. 31.
    Wilson SR, Givertz MM, Stewart GC, Mudge GH Jr. Ventricular assist devices the challenges of outpatient management. J Am Coll Cardiol. 2009;54(18):1647–59.CrossRefPubMedGoogle Scholar
  32. 32.
    Myers TJ, Bolmers M, Gregoric ID, Kar B, Frazier OH. Assessment of arterial blood pressure during support with an axial flow left ventricular assist device. J Heart Lung Transplant. 2009;28(5):423–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Moazami N, Fukamachi K, Kobayashi M, et al. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32(1):1–11.CrossRefPubMedGoogle Scholar
  34. 34.
    Reyes C, Voskoboynikov N, Chorpenning K, et al. Accuracy of the HVAD pump flow estimation algorithm. ASAIO J. 2016;62(1):15–9.CrossRefPubMedGoogle Scholar
  35. 35.
    DeVore AD, Mentz RJ, Patel CB. Medical Management of patients with continuous-flow left ventricular assist devices. Curr Treat Options Cardiovasc Med. 2014;16(2):283.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
  37. 37.
    Pratt AK, Shah NS, Boyce SW. Left ventricular assist device management in the ICU. Crit Care Med. 2014;42(1):158–68.CrossRefPubMedGoogle Scholar
  38. 38.
    Ambardekar AV, Allen LA, Lindenfeld J, et al. Implantable cardioverter-defibrillator shocks in patients with a left ventricular assist device. J Heart Lung Transplant. 2010;29(7):771–6.CrossRefPubMedGoogle Scholar
  39. 39.
    Mabvuure NT, Rodrigues JN. External cardiac compression during cardiopulmonary resuscitation of patients with left ventricular assist devices. Interact Cardiovasc Thorac Surg. 2014;19(2):286–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Rottenberg EM, Heard J, Hamlin R, Sun BC, Awad H. Abdominal only CPR during cardiac arrest for a patient with an LVAD during resternotomy: a case report. J Cardiothorac Surg. 2011;6:91.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Quader MA, Kumar D, Shah KB, Fatani YI, Katlaps G, Kasirajan V. Safety analysis of intermittent hemodialysis in patients with continuous flow left ventricular assist devices. Hemodial Int. 2014;18(1):205–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Guglielmi AA, Guglielmi KE, Bhat G, Siemeck R, Tatooles AJ. Peritoneal dialysis after left ventricular assist device placement. ASAIO J. 2014;60(1):127–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Thomas BA, Logar CM, Anderson AE. Renal replacement therapy in congestive heart failure requiring left ventricular assist device augmentation. Perit Dial Int. 2012;32(4):386–92.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Icenogle T, Sandler D, Puhlman M, Himley S, Sato DJ, Schaefer S. Intraperitoneal pocket for left ventricular assist device placement. J Heart Lung Transplant. 2003;22(7):818–21.CrossRefPubMedGoogle Scholar
  45. 45.
    Narula J, Bennett LE, DiSalvo T, Hosenpud JD, Semigran MJ, Dec GW. Outcomes in recipients of combined heart-kidney transplantation: multiorgan, same-donor transplant study of the International Society of Heart and Lung Transplantation/United Network for Organ Sharing Scientific Registry. Transplantation. 1997;63(6):861–7.CrossRefPubMedGoogle Scholar
  46. 46.
    Yanagida R, Czer LS, Ruzza A, et al. Use of ventricular assist device as bridge to simultaneous heart and kidney transplantation in patients with cardiac and renal failure. Transplant Proc. 2013;45(6):2378–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Schaffer JM, Chiu P, Singh SK, Oyer PE, Reitz BA, Mallidi HR. Heart combined heart-kidney transplantation in patients with concomitant renal insufficiency and end-stage heart failure. Am J Transplant. 2014;14(2):384–96.CrossRefPubMedGoogle Scholar
  48. 48.
    Reese PP, Veatch RM, Abt PL, Amaral S. Revisiting multi-organ transplantation in the setting of scarcity. Am J Transplant. 2014;14(1):21–6.CrossRefPubMedGoogle Scholar
  49. 49.
    Slaughter MS, Pagani FD, Rogers JG, et al. Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant. 2010;29(4):S1–S39.CrossRefPubMedGoogle Scholar
  50. 50.
    Annual Report of the US Organ Procurement and Transplantation Network and the Scientific Registry of Transplant Recipients: Transplant Data 1988-2016. Department of Health and Human Services, Health Resources and Services Administration, healthcare systems bureau, division of transplantation, Rockville, MD; United Network for Organ Sharing, Richmond, VA; University Renal Research and Education Association, Ann Arbor, MI.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Amanda K. Leonberg-Yoo
    • 1
  • J. Eduardo Rame
    • 2
  • Michael R. Rudnick
    • 3
  1. 1.Renal-Electrolyte and Hypertension Division, Department of MedicineUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Division of Cardiology, Department of MedicineHeart Failure, Mechanical Assist and Cardiac Transplant Center, University of PennsylvaniaPhiladelphiaUSA
  3. 3.Penn Presbyterian Medical CenterPerleman School of Medicine of the University of PennsylvaniaPhiladelphiaUSA

Personalised recommendations