Advertisement

Right Ventricular Failure Post Left Ventricular Assist Device Implantation

  • Abbas Bitar
  • Dmitry Abramov
Chapter

Abstract

Heart failure epidemic has been on the rise over the last few decades. With limited organ donors, the number of left ventricular assist device implantation (LVAD) has been on the rise. LVAD support comes with different complications including right ventricular failure (RVF). The incidence of RVF post LVAD implantation is estimated to be around 10–40%. Mechanism of RVF post LVAD implantation has a complex pathophysiology that involves patient hemodynamics, biochemical profile, comorbidities, and pump mechanics. Predicting RVF has been an extensive area of research. Multiple risk scores have been developed to predict RVF post-op and the need of a right ventricular assist device. Moreover, multiple echocardiographic and hemodynamic parameters have been reported in the literature that could predict RVF. After diagnosis, management of RVF remains complex and involves judicious optimization of hemodynamics and biochemical profile in the perioperative period. Despite optimal management many patients will end up developing chronic RVF, which has been associated with worse outcome even among patients undergoing heart transplantation. Additionally, RVF has been reported to be a strong risk factor for acute kidney injury and progression to renal failure post LVAD implantation. This chapter reviews the pathophysiology, diagnosis, and management of RVF post LVAD implantation.

Keywords

Ventricular assist device Right ventricular failure Renal failure Predictors Acute right ventricular failure Chronic right ventricular failure 

References

  1. 1.
    Dang NC, Topkara VK, Mercando M, Kay J, Kruger KH, Aboodi MS, et al. Right heart failure after left ventricular assist device implantation in patients with chronic congestive heart failure. J Heart Lung Transplant. 2006;25(1):1–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Patel ND, Weiss ES, Schaffer J, Ullrich SL, Rivard DC, Shah AS, et al. Right heart dysfunction after left ventricular assist device implantation: a comparison of the pulsatile HeartMate I and axial-flow HeartMate II devices. Ann Thorac Surg. 2008;86(3):832–40; discussion −40CrossRefPubMedGoogle Scholar
  3. 3.
    Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24.CrossRefGoogle Scholar
  5. 5.
    Baumwol J, Macdonald PS, Keogh AM, Kotlyar E, Spratt P, Jansz P, et al. Right heart failure and “failure to thrive” after left ventricular assist device: clinical predictors and outcomes. J Heart Lung Transplant. 2011;30(8):888–95.PubMedGoogle Scholar
  6. 6.
  7. 7.
    Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS). Appendix A: Adverse event definitions: adult and pediatric patients. 2016. Report No.Google Scholar
  8. 8.
    Farrar DJ, Compton PG, Hershon JJ, Fonger JD, Hill JD. Right heart interaction with the mechanically assisted left heart. World J Surg. 1985;9(1):89–102.CrossRefPubMedGoogle Scholar
  9. 9.
    MacNee W. Pathophysiology of cor pulmonale in chronic obstructive pulmonary disease. Part one. Am J Respir Crit Care Med. 1994;150(3):833–52.CrossRefPubMedGoogle Scholar
  10. 10.
    Morgan JA, Paone G, Nemeh HW, Murthy R, Williams CT, Lanfear DE, et al. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant. 2013;32(4):398–403.CrossRefPubMedGoogle Scholar
  11. 11.
    Uriel N, Sayer G, Addetia K, Fedson S, Kim GH, Rodgers D, et al. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail. 2016;4(3):208–17.CrossRefPubMedGoogle Scholar
  12. 12.
    Mikus E, Stepanenko A, Krabatsch T, Loforte A, Dandel M, Lehmkuhl HB, et al. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg. 2011;40(4):971–7.PubMedGoogle Scholar
  13. 13.
    Santamore WP, Dell'Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308.CrossRefPubMedGoogle Scholar
  14. 14.
    Moon MR, Bolger AF, DeAnda A, Komeda M, Daughters GT 2nd, Nikolic SD, et al. Septal function during left ventricular unloading. Circulation. 1997;95(5):1320–7.CrossRefPubMedGoogle Scholar
  15. 15.
    Krishan K, Nair A, Pinney S, Adams DH, Anyanwu AC. Liberal use of tricuspid-valve annuloplasty during left-ventricular assist device implantation. Eur J Cardiothorac Surg. 2012;41(1):213–7.CrossRefPubMedGoogle Scholar
  16. 16.
    Bellofiore A, Chesler NC. Methods for measuring right ventricular function and hemodynamic coupling with the pulmonary vasculature. Ann Biomed Eng. 2013;41(7):1384–98.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Dandel M, Krabatsch T, Falk V. Left ventricular vs. biventricular mechanical support: decision making and strategies for avoidance of right heart failure after left ventricular assist device implantation. Int J Cardiol. 2015;198:241–50.CrossRefPubMedGoogle Scholar
  18. 18.
    Cantillon DJ, Saliba WI, Wazni OM, Kanj M, Starling RC, Tang WH, et al. Low cardiac output associated with ventricular tachyarrhythmias in continuous-flow LVAD recipients with a concomitant ICD (LoCo VT study). J Heart Lung Transplant. 2014;33(3):318–20.CrossRefPubMedGoogle Scholar
  19. 19.
    Brisco MA, Sundareswaran KS, Milano CA, Feldman D, Testani JM, Ewald GA, et al. Incidence, risk, and consequences of atrial arrhythmias in patients with continuous-flow left ventricular assist devices. J Card Surg. 2014;29(4):572–80.CrossRefPubMedGoogle Scholar
  20. 20.
    Dent CL, Ma Q, Dastrala S, Bennett M, Mitsnefes MM, Barasch J, et al. Plasma neutrophil gelatinase-associated lipocalin predicts acute kidney injury, morbidity and mortality after pediatric cardiac surgery: a prospective uncontrolled cohort study. Crit Care. 2007;11(6):R127.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pronschinske KB, Qiu S, Wu C, Kato TS, Khawaja T, Takayama H, et al. Neutrophil gelatinase-associated lipocalin and cystatin C for the prediction of clinical events in patients with advanced heart failure and after ventricular assist device placement. J Heart Lung Transplant. 2014;33(12):1215–22.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yost GL, Coyle L, Bhat G, Model TAJ. For end-stage liver disease predicts right ventricular failure in patients with left ventricular assist devices. J Artif Organs. 2016;19(1):21–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB, Weng Y, et al. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27(12):1275–81.CrossRefPubMedGoogle Scholar
  24. 24.
    Vivo RP, Cordero-Reyes AM, Qamar U, Garikipati S, Trevino AR, Aldeiri M, et al. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32(8):792–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Redlin M, Mladenow A, et al. Right-to-left ventricular end-diastolic diameter ratio and prediction of right ventricular failure with continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2011;30(1):64–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Kato TS, Farr M, Schulze PC, Maurer M, Shahzad K, Iwata S, et al. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2012;109(2):246–51.CrossRefPubMedGoogle Scholar
  27. 27.
    Kiernan MS, French AL, DeNofrio D, Parmar YJ, Pham DT, Kapur NK, et al. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189–97.CrossRefPubMedGoogle Scholar
  28. 28.
    Puwanant S, Hamilton KK, Klodell CT, Hill JA, Schofield RS, Cleeton TS, et al. Tricuspid annular motion as a predictor of severe right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2008;27(10):1102–7.CrossRefPubMedGoogle Scholar
  29. 29.
    Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60(6):521–8.CrossRefPubMedGoogle Scholar
  30. 30.
    Kato TS, Jiang J, Schulze PC, Jorde U, Uriel N, Kitada S, et al. Serial echocardiography using tissue Doppler and speckle tracking imaging to monitor right ventricular failure before and after left ventricular assist device surgery. JACC Heart Fail. 2013;1(3):216–22.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Fitzpatrick JR 3rd, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, et al. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, et al. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63; discussion 63-4CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery Pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22(2):110–6.CrossRefGoogle Scholar
  34. 34.
    Kalogeropoulos AP, Kelkar A, Weinberger JF, Morris AA, Georgiopoulou VV, Markham DW, et al. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603.CrossRefPubMedGoogle Scholar
  35. 35.
    Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4(9):711–21.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 International Society for Heart and Lung Transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87.CrossRefGoogle Scholar
  37. 37.
    Argenziano M, Choudhri AF, Moazami N, Rose EA, Smith CR, Levin HR, et al. Randomized, double-blind trial of inhaled nitric oxide in LVAD recipients with pulmonary hypertension. Ann Thorac Surg. 1998;65(2):340–5.CrossRefGoogle Scholar
  38. 38.
    Hamdan R, Mansour H, Nassar P, Saab M. Prevention of right heart failure after left ventricular assist device implantation by phosphodiesterase 5 inhibitor. Artif Organs. 2014;38(11):963–7.CrossRefPubMedGoogle Scholar
  39. 39.
    Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, et al. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail. 2008;1(4):213–9.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Baker WL, Radojevic J, Gluck JA. Systematic review of phosphodiesterase-5 inhibitor use in right ventricular failure following left ventricular assist device implantation. Artif Organs. 2016;40(2):123–8.CrossRefPubMedGoogle Scholar
  41. 41.
    Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30.CrossRefGoogle Scholar
  42. 42.
    Copeland JG, Smith RG, Arabia FA, Nolan PE, Sethi GK, Tsau PH, et al. Cardiac replacement with a total artificial heart as a bridge to transplantation. N Engl J Med. 2004;351(9):859–67.CrossRefPubMedGoogle Scholar
  43. 43.
    Haglund NA, Burdorf A, Jones T, Shostrom V, Um J, Ryan T, et al. Inhaled Milrinone after left ventricular assist device implantation. J Card Fail. 2015;21(10):792–7.CrossRefGoogle Scholar
  44. 44.
    Hanke JS, Haverich A, Schmitto JD. Right heart failure after left ventricular assist devices: surgical considerations. J Heart Lung Transplant. 2016;35(3):395–6.CrossRefPubMedGoogle Scholar
  45. 45.
    Goldstein DJ, Left BRB. Ventricular assist devices and bleeding: adding insult to injury. Ann Thorac Surg. 2003;75(6 Suppl):S42–7.CrossRefGoogle Scholar
  46. 46.
    Robertson JO, Grau-Sepulveda MV, Okada S, O'Brien SM, Matthew Brennan J, Shah AS, et al. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: a Society of Thoracic Surgeons database analysis. J Heart Lung Transplant. 2014;33(6):609–17.CrossRefPubMedGoogle Scholar
  47. 47.
    Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant. 2013;32(2):141–56.CrossRefPubMedGoogle Scholar
  48. 48.
    Fitzpatrick JR 3rd, Frederick JR, Hiesinger W, Hsu VM, McCormick RC, Kozin ED, et al. Early planned institution of biventricular mechanical circulatory support results in improved outcomes compared with delayed conversion of a left ventricular assist device to a biventricular assist device. J Thorac Cardiovasc Surg. 2009;137(4):971–7.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Morgan JA, John R, Lee BJ, Oz MC, Naka Y. Is severe right ventricular failure in left ventricular assist device recipients a risk factor for unsuccessful bridging to transplant and post-transplant mortality. Ann Thorac Surg. 2004;77(3):859–63.CrossRefPubMedGoogle Scholar
  50. 50.
    Cheung AW, White CW, Davis MK, Short-term FDH. Mechanical circulatory support for recovery from acute right ventricular failure: clinical outcomes. J Heart Lung Transplant. 2014;33(8):794–9.CrossRefPubMedGoogle Scholar
  51. 51.
    Kapelios CJ, Charitos C, Kaldara E, Malliaras K, Nana E, Pantsios C, et al. Late-onset right ventricular dysfunction after mechanical support by a continuous-flow left ventricular assist device. J Heart Lung Transplant. 2015;34(12):1604–10.CrossRefPubMedGoogle Scholar
  52. 52.
    Gosev I, Katz JN, Patel CB, et al. Late right heart failure in destination therapy patients with HeartMate II continuous flow device. J Heart Lung Transplant. 2015;34:S65–S6.CrossRefGoogle Scholar
  53. 53.
    Takeda K, Takayama H, Colombo PC, Yuzefpolskaya M, Fukuhara S, Han J, et al. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2015;34(8):1024–32.CrossRefPubMedGoogle Scholar
  54. 54.
    Takeda K, Takayama H, Colombo PC, Jorde UP, Yuzefpolskaya M, Fukuhara S, et al. Late right heart failure during support with continuous-flow left ventricular assist devices adversely affects post-transplant outcome. J Heart Lung Transplant. 2015;34(5):667–74.CrossRefPubMedGoogle Scholar
  55. 55.
    Welp H, Rukosujew A, Tjan TD, Hoffmeier A, Kosek V, Scheld HH, et al. Effect of pulsatile and non-pulsatile left ventricular assist devices on the renin-angiotensin system in patients with end-stage heart failure. Thorac Cardiovasc Surg. 2010;58(Suppl 2):S185–8.CrossRefPubMedGoogle Scholar
  56. 56.
    Hasin T, Topilsky Y, Schirger JA, Li Z, Zhao Y, Boilson BA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36.CrossRefPubMedGoogle Scholar
  57. 57.
    Kamdar F, Boyle A, Liao K, Colvin-adams M, Joyce L, Effects JR. Of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant. 2009;28(4):352–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Borgi J, Tsiouris A, Hodari A, Cogan CM, Paone G, Morgan JA. Significance of postoperative acute renal failure after continuous-flow left ventricular assist device implantation. Ann Thorac Surg. 2013;95(1):163–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.CrossRefPubMedGoogle Scholar
  60. 60.
    Alba AC, Rao V, Ivanov J, Ross HJ, Delgado DH. Predictors of acute renal dysfunction after ventricular assist device placement. J Card Fail. 2009;15(10):874–81.CrossRefPubMedGoogle Scholar
  61. 61.
    Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, et al. Sixth INTERMACS annual report: a 10,000-patient database. J Heart Lung Transplant. 2014;33(6):555–64.CrossRefPubMedGoogle Scholar
  62. 62.
    Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75.CrossRefPubMedGoogle Scholar
  63. 63.
    Coffin ST, Waguespack DR, Haglund NA, Maltais S, Dwyer JP, Keebler ME. Kidney dysfunction and left ventricular assist device support: a comprehensive perioperative review. Cardiorenal Med. 2015;5(1):48–60.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, et al. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105(7):1030–5.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Cardiovascular Medicine, Department of Internal MedicineUniversity of MichiganAnn ArborUSA
  2. 2.Division of Cardiovascular Medicine, Department of Internal MedicineCardiovascular Center, University of LouisvilleKentuckyUSA

Personalised recommendations