Construction of a Potential Energy Surface Based on a Diabatic Model for Proton Transfer in Molecular Pairs

  • Yuta Hori
  • Tomonori Ida
  • Motohiro Mizuno
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)


We propose a simple construction method of the potential energy surface based on diabatic model for proton transfer in molecular pairs. Assuming two-state valence bond electronic wave functions as a diabatic basis, the diagonal and non-diagonal matrix elements in diabatic potential of water, ammonia, and imidazole pairs were obtained. The validity of the construction procedure was confirmed by comparing two adiabatic potentials: one was transformed from the obtained diabatic potential and another was calculated by DFT calculation. Diabatic potentials were also obtained using fewer reference points than conventional methods at various intermolecular distances. Finally, we discuss the resulting diabatic potential and non-diagonal elements in detail.


Potential energy surface Proton transfer Diabatic 



This work was supported by a Grant-in-Aid for Scientific Research (23310063, 26286002) from the Ministry of Education, Science and Technology, Government of Japan.


  1. 1.
    Truhlar DG, Steckler R, Gordon MS (1987) Chem Rev 87:217–236CrossRefGoogle Scholar
  2. 2.
    Schatz GC (1989) Rev Mod Phys 61:669–688CrossRefGoogle Scholar
  3. 3.
    Levine RD (2009) Molecular reaction dynamics. Cambridge University PressGoogle Scholar
  4. 4.
    Worth GA, Cederbaum LS (2004) Annu Rev Phys Chem 55:127–158CrossRefPubMedGoogle Scholar
  5. 5.
    Köppel H, Domcke W, Cederbaum LS (1984) Adv Chem Phys 57:59–246Google Scholar
  6. 6.
    Nicolas G, Gadea FX (1999) J Chem Phys 111:10537CrossRefGoogle Scholar
  7. 7.
    Voorhis TV et al (2010) Annu Rev Phys Chem 61:149–170CrossRefPubMedGoogle Scholar
  8. 8.
    Åqvist J, Warshel A (1993) Chem Rev 93:2523–2544CrossRefGoogle Scholar
  9. 9.
    Mo Y, Gao J (2000) J Phys Chem A 104:3012–3020CrossRefGoogle Scholar
  10. 10.
    Truhlar DG (2007) J Comp Chem 28:73–86CrossRefGoogle Scholar
  11. 11.
    Song L, Gao J (2008) J Phys Chem A 112:12925–12935CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Warshel A, Weiss RM (1980) J Am Chem Soc 102:6218–6226CrossRefGoogle Scholar
  13. 13.
    Lobaugh J, Voth GA (1996) J Chem Phys 104:2056CrossRefGoogle Scholar
  14. 14.
    Chang Y-T, Miller WH (1990) J Phys Chem 94:5884–5888CrossRefGoogle Scholar
  15. 15.
    Hinsen K, Roux BJ (1997) Comp Chem 18:368–380CrossRefGoogle Scholar
  16. 16.
    Minichino C, Voth GA (1997) J Phys Chem B 101:4544–4552CrossRefGoogle Scholar
  17. 17.
    Sagnella DE, Tuckerman ME (1998) J Chem Phys 108:2073–2083CrossRefGoogle Scholar
  18. 18.
    Vuilleumier R, Borgis D (1998) Chem Phys Lett 284:71–77CrossRefGoogle Scholar
  19. 19.
    Wang Y, Gunn JR (1999) Int J Quantum Chem 73:357–367CrossRefGoogle Scholar
  20. 20.
    Schmitt UW, Voth GA (1999) J Chem Phys 111:9361–9381CrossRefGoogle Scholar
  21. 21.
    Čuma M, Schmitt UW, Voth GA (2000) Chem Phys 258:187–199CrossRefGoogle Scholar
  22. 22.
    Čuma M, Schmitt UW, Voth GA (2001) J Phys Chem A 105:2814–2823CrossRefGoogle Scholar
  23. 23.
    Brancato G, Tuckerman ME (2005) J Chem Phys 122:224507CrossRefPubMedGoogle Scholar
  24. 24.
    Hong G, Rosta E, Warshel AJ (2006) Phys Chem B 110:19570–19574CrossRefGoogle Scholar
  25. 25.
    Lammers S, Lutz S, Meuwly MJ (2008) Comp Chem 29:1048–1063CrossRefGoogle Scholar
  26. 26.
    Chen H, Yan T, Voth GA (2009) J Phys Chem A 113:4507–4517CrossRefPubMedGoogle Scholar
  27. 27.
    Feng S, Voth GA (2011) J Phys Chem B 115:5903–5912CrossRefPubMedGoogle Scholar
  28. 28.
    Kamerlin SCL, Warshel A (2011) IREs Comput Mol Sci 1:30–45CrossRefGoogle Scholar
  29. 29.
    Li A, Cao Z, Li Y, Yan T, Shen P (2012) J Phys Chem B 116:12793–12800CrossRefPubMedGoogle Scholar
  30. 30.
    Marinica DC, Gaigeot M-P, Borgis D (2006) Chem Phys Lett 423:390–394CrossRefGoogle Scholar
  31. 31.
    Jaroszewski L, Lesyng B, Tanner JJ, McCammon JA (1990) Chem Phys Lett 175:282–288CrossRefGoogle Scholar
  32. 32.
    Jaroszewski L et al (1993) J Mol Struct THEOCHEM 283:57–62CrossRefGoogle Scholar
  33. 33.
    Tatara W et al (2003) J Phys Chem A 107:7827–7831CrossRefGoogle Scholar
  34. 34.
    Mangiatordi GF et al (2011) J Phys Chem A 115:2627–2634CrossRefPubMedGoogle Scholar
  35. 35.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, (Revision C.01). Gaussian, Inc., Wallingford CTGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry Course, Division of Material Chemistry, Graduate School of Natural Science and TechnologyKanazawa UniversityKanazawaJapan

Personalised recommendations