An Ab Initio Study of Boric Acid, Borate, and their Interconversion

  • Cory C. Pye
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)


The chemistry of boric acid and monomeric borates is reviewed. Following a discussion of the crystal structures and nuclear magnetic resonance studies, ab initio results are presented of molecular ortho- and metaboric acid, (tetrahydroxo)borate, and the hydrates of orthoboric acid and borate. The structures and vibrational frequencies are compared with experiment. Attempts to study their interconversion lead us to a discussion of oxodihydroxoborate (the conjugate base of boric acid), and of the hydroxide-boric acid complex. It is hypothesized that the conversion of boric acid into borate proceeds via the oxodihydroxoborate intermediate. Finally, the calculated structures of hydroxodioxo- and trioxoborate are compared with experiment.


Boric acid Borate Ab initio 



The author acknowledges the Atlantic Computational Excellence Network (ACEnet) for computational support.

Supplementary material

432170_1_En_8_MOESM1_ESM.pdf (260 kb)
Supplementary material 1 (PDF 260 kb).


  1. 1.
    Richens DT (1997) The chemistry of aqua ions. Wiley, ChichesterGoogle Scholar
  2. 2.
    Oi T (2000) Calculations of reducted partition function ratios of monomeric and dimeric boric acids and borates by the ab initio molecular orbital theory. J Nucl Sci Tech 37(2):166–172CrossRefGoogle Scholar
  3. 3.
    Oi T (2000) Ab initio molecular orbital calculations of reduced partition function ratios of polyboric acids and polyborate anions. Z Naturforsch A 55:623–628CrossRefGoogle Scholar
  4. 4.
    Oi T, Yanase S (2001) Calculations of reduced partition function ratios of hydrated monoborate anion by the ab initio molecular orbital theory. J Nucl Sci Tech 38:429–432CrossRefGoogle Scholar
  5. 5.
    Zeebe RE (2005) Stable boron isotope fractionation between dissolved B(OH)3 and B(OH)4. Geochim Cosmochim Acta 69:2753–2766CrossRefGoogle Scholar
  6. 6.
    Liu Y, Tossell JA (2005) Ab initio molecular orbital calculations for boron isotope fractionation on boric acids and borates. Geochim Cosmochim Acta 69:3995–4006CrossRefGoogle Scholar
  7. 7.
    Tossell JA (2005) Boric acid, “carbonic” acid, and N-containing oxyacids in aqueous solution: ab initio studies of structure, pKa, NMR shifts, and isotopic fractionation. Geochim Cosmochim Acta 69:5647–5658CrossRefGoogle Scholar
  8. 8.
    Rustad JR, Bylaska EJ (2007) Ab initio calculation of isotopic fractionation in B(OH)3(aq) and B(OH)4(aq). J Am Chem Soc 129:2222–2223CrossRefPubMedGoogle Scholar
  9. 9.
    Rustad JR, Bylaska EJ, Jackson VE, Dixon DA (2010) Calculation of boron-isotope fractionation between B(OH)3(aq) and B(OH)4-(aq). Geochim Cosmochim Acta 74:2843–2850CrossRefGoogle Scholar
  10. 10.
    Zeebe RE, Sanyal A, Ortiz JD, Wolf-Gladrow DA (2001) A theoretical study of the kinetics of the boric acid-borate equilibrium in seawater. Marine Chem 73:113–124CrossRefGoogle Scholar
  11. 11.
    Kracek FC, Morey GW, Merwin HE (1938) The system, water-boron oxide. Am J Sci A 35:143–171Google Scholar
  12. 12.
    Blasdale WC, Slansky CM (1939) The solubility curves of boric acid and the borates of sodium. J Am Chem Soc 61:917–920CrossRefGoogle Scholar
  13. 13.
    Berger SV (1953) The crystal structure of boron oxide. Acta Chem Scand 7:611–622CrossRefGoogle Scholar
  14. 14.
    Strong SL, Kaplow R (1968) The structure of crystalline B2O3. Acta Crystallogr B 24:1032–1036CrossRefGoogle Scholar
  15. 15.
    Gurr GE, Montgomery PW, Knutson CD, Gorres BT (1970) The crystal structure of trigonal diboron trioxide. Acta Crystallogr B 26:906–915CrossRefGoogle Scholar
  16. 16.
    Effenberger H, Lengauer CL, Parthe E (2001) Trigonal B2O3 with higher space-group symmetry: results of a reevaluation. Monat Chem 132:1515–1517CrossRefGoogle Scholar
  17. 17.
    Prewitt CT, Shannon RD (1968) Crystal structure of a high-pressure form of B2O3. Acta Crystallogr B 24:869–874CrossRefGoogle Scholar
  18. 18.
    Zachariasen WH (1934) The crystal lattice of boric acid, BO3H3. Z Kristallogr 88:150–161Google Scholar
  19. 19.
    Cowley JM (1953) Structure analysis of single crystals by electron diffraction. II. Disordered boric acid structure. Acta Crystallogr 6:522–529CrossRefGoogle Scholar
  20. 20.
    Zachariasen WH (1954) The precise structure of orthoboric acid. Acta Crystallogr 7:305–310CrossRefGoogle Scholar
  21. 21.
    Shuvalov RR, Burns PC (2003) A new polytype of orthoboric acid, H3BO3-3T1. Acta Crystallogr C 59:i47–i49CrossRefPubMedGoogle Scholar
  22. 22.
    Tazaki H (1940) Single crystals of metaboric acid. J Sci Hiroshima Univ A 10:37–54Google Scholar
  23. 23.
    Tazaki H (1940) The structure of orthorhombic metaboric acid, HBO2(a). J Sci Hiroshima Univ A 10:55–61Google Scholar
  24. 24.
    Peters CR, Milberg ME (1964) The refined structure of orthorhombic metaboric acid. Acta Crystallogr 17:229–234CrossRefGoogle Scholar
  25. 25.
    Zachariasen WH (1952) A new analytical method for solving complex crystal structures. Acta Crystallogr 5:68–73CrossRefGoogle Scholar
  26. 26.
    Zachariasen WH (1963) The crystal structure of monoclinic metaboric acid. Acta Crystallogr 16:385–389CrossRefGoogle Scholar
  27. 27.
    Freyhardt CC, Wiebcke M, Felsche J (2000) The monoclinic and cubic phases of metaboric acid (precise redeterminations). Acta Crystallogr C 56:276–278CrossRefPubMedGoogle Scholar
  28. 28.
    Zachariasen WH (1963) The crystal structure of cubic metaboric acid. Acta Crystallogr 16:380–384CrossRefGoogle Scholar
  29. 29.
    Konig H, Hoppe R (1977) Zur Kenntnis von Na3BO3. Z Anorg Allg Chem 434:225–232CrossRefGoogle Scholar
  30. 30.
    Menchetti S, Sabelli C (1982) Structure of hydrated sodium borate Na2[BO2(OH)]. Acta Crystallogr B 38:1282–1284CrossRefGoogle Scholar
  31. 31.
    Block S, Perloff A (1963) The direct determination of the crystal structure of NaB(OH)42H2O. Acta Crystallogr 16:1233–1238CrossRefGoogle Scholar
  32. 32.
    Csetenyi LJ, Glasser FP, Howie RA (1993) Structure of sodium tetrahydroxyborate. Acta Crystallogr C 49:1039–1041CrossRefGoogle Scholar
  33. 33.
    Touboul M, Betourne E, Nowogrocki G (1995) Crystal structure and dehydration process of Li(H2O)4B(OH)4.2H2O. J Solid State Chem 115:549–553CrossRefGoogle Scholar
  34. 34.
    Zachariasen WH (1964) The crystal structure of lithium metaborate. Acta Crystallogr 17:749–751CrossRefGoogle Scholar
  35. 35.
    Hohne E (1964) Die Kristallstruktur des LiB(OH)4. Z Chem 4:431–432CrossRefGoogle Scholar
  36. 36.
    Fronczek FR, Aubry DA, Stanley GG (2001) Refinement of lithium tetrahydroxoborate with low-temperature CCD data. Acta Crystallogr E 57:i62–i63CrossRefGoogle Scholar
  37. 37.
    Onak TP, Landesman H, Williams RE, Shapiro I (1959) The B11 nuclear magnetic resonance chemical shifts and spin coupling values for various compounds. J Phys Chem 63:1533–1535CrossRefGoogle Scholar
  38. 38.
    Momii RK, Nachtrieb NH (1967) Nuclear magnetic resonance study of borate-polyborate equilibria in aqueous solution. Inorg Chem 6:1189–1192CrossRefGoogle Scholar
  39. 39.
    How MJ, Kennedy GR, Mooney EF (1969) The pH dependence of the boron-11 chemical-shift of borate-boric acid solutions. J Chem Soc D Chem Commun 267–268CrossRefGoogle Scholar
  40. 40.
    Smith HDJ, Wiersema RJ (1972) Boron-11 nuclear magnetic resonance study of polyborate ions in solution. Inorg Chem 11:1152–1154CrossRefGoogle Scholar
  41. 41.
    Covington AK, Newman KE (1973) Base dissociation constant of the borate ion from 11B chemical shifts. J Inorg Nucl Chem 35:3257–3262CrossRefGoogle Scholar
  42. 42.
    Henderson WG, How MJ, Kennedy GR, Mooney EF (1973) The interconversion of aqueous boron species and the interaction of borate with diols: a 11B N.M.R. study. Carbohydrate Res 28:1–12CrossRefGoogle Scholar
  43. 43.
    Janda R, Heller G (1979) 11B–NMR-spektroskopische Untersuchungen an waessrigen Polyboratloesungen. Z Naturforsch B 34:1078–1083CrossRefGoogle Scholar
  44. 44.
    Epperlein BW, Lutz O, Schwenk A (1975) Fourier-Kernresonanzuntersuchungen an 10B und 11B in Waessriger Loesung. Z Naturforsch A 30:955–958Google Scholar
  45. 45.
    Salentine CG (1983) High-field 11B NMR of alkali borates. Aqueous polyborate equilibria. Inorg Chem 22:3920–3924CrossRefGoogle Scholar
  46. 46.
    Frisch MJ et al (2004) Gaussian 03, Revision D.02. Gaussian Inc., Wallingford, CTGoogle Scholar
  47. 47.
    Gupta A, Tossell JA (1981) A theoretical study of bond distances, X-ray spectra and electron density distributions in borate polyhedra. Phys Chem Miner 7:159–164CrossRefGoogle Scholar
  48. 48.
    Gupta A, Tossell JA (1983) Quantum mechanical studies of distortions and polymerization of borate polyhedra. Am Miner 68:989–995Google Scholar
  49. 49.
    Zhang ZG, Boisen MBJ, Finger LW, Gibbs GV (1985) Molecular mimicry of the geometry and charge density distribution of polyanions in borate minerals. Am Miner 70:1238–1247Google Scholar
  50. 50.
    Zaki K, Pouchan C (1995) Vibrational analysis of orthoboric acid H3BO3 from ab initio second-order perturbation calculations. Chem Phys Lett 236:184–188CrossRefGoogle Scholar
  51. 51.
    Tian SX, Xu KZ, Huang M-B, Chen XJ, Yang JL, Jia CC. Theoretical study on infrared vibrational spectra of boric-acid in gas-phase using density functional methods. J Mol Struct (Theochem) 459:223–227, 459CrossRefGoogle Scholar
  52. 52.
    Tachikawa M (2004) A density functional study on hydrated clusters of orthoboric acid, B(OH)3(H2O)n (n = 1–5). J Mol Struct (Theochem) 710:139–150CrossRefGoogle Scholar
  53. 53.
    Stefani D, Pashalidis I, Nicolaides AV (2008) A computational study of the conformations of the boric acid (B(OH)3), its conjugate base ((HO)2BO) and borate anion (B(OH)4). J Mol Struct (Theochem) 853:33–38CrossRefGoogle Scholar
  54. 54.
    Zhou Y, Fang C, Fang Y, Zhu F (2011) Polyborates in aqueous borate solution: a Raman and DFT theory investigation. Spectrochim Acta A 83:82–87CrossRefGoogle Scholar
  55. 55.
    Ananthakrishnan R (1936) The Raman spectra of some boron compounds (methyl borate, ethyl borate, boron tri-bromide and boric acid). Proc Indian Acad Sci A 4:74–81Google Scholar
  56. 56.
    Ananthakrishnan R (1937) The Raman spectra of crystal powders. IV. Some organic and inorganic compounds. Proc Indian Acad Sci A 5:200–221Google Scholar
  57. 57.
    Hibben JH (1938) The constitution of some boric oxide compounds. Am J Sci A 35:113–125Google Scholar
  58. 58.
    Mitra SM (1938) Raman effect in boric acid and in some boron compounds. Ind J Phys 12:9–14Google Scholar
  59. 59.
    Kahovec L (1938) Studien zum Raman-Effekt. Mitteilung LXXXV. Borsauere und Derivate. Z Phys Chem 40:135–145Google Scholar
  60. 60.
    Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294CrossRefGoogle Scholar
  61. 61.
    Bethell DE, Sheppard N (1955) The infra-red spectrum and structure of boric acid. Trans Faraday Soc 51:9–15CrossRefGoogle Scholar
  62. 62.
    Servoss RR, Clark HM (1957) Vibrational spectra of normal and isotopically labeled boric acid. J Chem Phys 26:1175–1178CrossRefGoogle Scholar
  63. 63.
    Maya L (1976) Identification of polyborate and fluoropolyborate ions in solution by Raman spectroscopy. Inorg Chem 15:2179–2184CrossRefGoogle Scholar
  64. 64.
    Maeda M, Hirao T, Kotaka M, Kakihana H (1979) Raman spectra of polyborate ions in aqueous solution. J Inorg Nucl Chem 41:1217–1220CrossRefGoogle Scholar
  65. 65.
    Janda R, Heller G (1979) Ramanspektroskopische Untersuchungen an festen und in Wasser geloesten Polyboraten. Z Naturforsch B 34:585–590CrossRefGoogle Scholar
  66. 66.
    Ogden JS, Young NA (1988) The characterisation of molecular boric acid by mass spectrometry and matrix isolation infrared spectroscopy. J Chem Soc Dalton Trans 1645–1652Google Scholar
  67. 67.
    Gilson TR (1991) Characterization of ortho- and meta-boric acids in the vapour phase. J Chem Soc Dalton Trans 2463–2466Google Scholar
  68. 68.
    Andrews L, Burkholder TR (1992) Infrared spectra of molecular B(OH)3 and HOBO in solid argon. J Chem Phys 97:7203–7210CrossRefGoogle Scholar
  69. 69.
    Gupta A, Swanson DK, Tossell JA, Gibbs GV (1981) Calculation of bond distances, one-electron properties and electron density distributions in first-row tetrahedral hydroxy and oxyanions. Am Miner 66:601–609Google Scholar
  70. 70.
    Hess AC, McMillan PF, O’Keeffe M (1988) Torsional barriers and force fields in H4TO4 molecules and molecular ions (T = C, B, Al, Si). J Phys Chem 92:1785–1791CrossRefGoogle Scholar
  71. 71.
    Nielsen JR, Ward NE (1937) Raman spectrum and structure of the metaborate ion. J Chem Phys 5:201CrossRefGoogle Scholar
  72. 72.
    Edwards JO, Morrison GC, Ross VF, Schultz JW (1955) The structure of the aqueous borate ion. J Am Chem Soc 77:266–268CrossRefGoogle Scholar
  73. 73.
    Oertel RP (1972) Raman study of aqueous monoborate-polyol complexes. Equilibria in the monoborate-1,2-ethanediol system. Inorg Chem 11:544–549CrossRefGoogle Scholar
  74. 74.
    Liu Z, Gao B, Hu M, Li S, Xia S (2003) FT-IR and Raman spectroscopic analysis of hydrated cesium borates and their saturated aqueous solution. Spectrochim Acta A 59:2741–2745CrossRefGoogle Scholar
  75. 75.
    Zhu FY, Fang CH, Fang Y, Zhou YQ, Ge HW, Liu HY (2014) Structure of aqueous potassium metaborate solution. J Mol Struct 1070:80–85CrossRefGoogle Scholar
  76. 76.
    Attina M, Cacace F, Occhiucci G, Ricci A (1992) Gaseous borate and polyborate anions. Inorg Chem 31:3114–3117CrossRefGoogle Scholar
  77. 77.
    Waton G, Mallo P, Candau SJ (1984) Temperature-jump rate study of the chemical relaxation of aqueous boric acid solutions. J Phys Chem 88:3301–3305CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistrySaint Mary’s UniversityHalifaxCanada

Personalised recommendations