Advertisement

Advanced Relativistic Energy Approach in Electron-Collisional Spectroscopy of Multicharged Ions in Plasmas

  • Alexander V. Glushkov
  • Vasily V. Buyadzhi
  • Andrey A. Svinarenko
  • Eugeny V. Ternovsky
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)

Abstract

We present the fundamentals of an advanced relativistic approach, based on the Gell-Mann and Low formalism, to studying spectroscopic characteristics of the multicharged ions in plasmas, in particular, computing the electron-ion collision strengths, cross-sections etc. The approach is combined with relativistic many-body perturbation theory with the Debye shielding model Hamiltonian for electron-nuclear and electron-electron systems. The optimized one-electron representation in the perturbation theory zeroth approximation is constructed by means of the correct treating the gauge dependent multielectron contribution of the lowest perturbation theory corrections to the radiation widths of atomic levels. The computation results on the oscillator strengths and energy shifts due to the plasmas environment effect, the electron-collision strengths, collisional excitation and de-excitation rates for a number of the Be- and Ne-like ions of argon, nickel and krypton embedded to different types of plasmas environment (with temperature 0.02–2 keV and electron density 1016–1024 cm−3) are presented and analyzed.

Keywords

Electron-collisional processes Μulticharged ions Relativistic energy approach Debye plasmas 

Notes

Acknowledgements

The authors are very much thankful to Prof. Jean Maruani and Prof. Alex Wang for invitation to make contributions on the QSCP-XXI workshop (Vancouver, Canada). The useful comments of the anonymous referees are very much acknowledged too.

References

  1. 1.
    Oks E (2010) In: Oks E, Dalimier E, Stamm R, Stehle C, Gonzalez MA (eds) Spectral line shapes in plasmas and gases. Int J Spectr 1:852581Google Scholar
  2. 2.
    Griem HR (1974) Spectral line broadening by plasmas. Academic Press, New YorkGoogle Scholar
  3. 3.
    Ivanova EP (2011) Phys Rev A 84:043829 Google Scholar
  4. 4.
    Ivanova EP, Grant IP (1998) J Phys B Mol Opt Phys 31:2871; Ivanova EP, Zinoviev NA (2001) Phys Lett A 274:239Google Scholar
  5. 5.
    Khetselius OYu (2011) Quantum structure of electroweak interaction in heavy finite fermi-systems. Astroprint, OdessaGoogle Scholar
  6. 6.
    Glushkov AV (1991) Opt Spectrosc 70:555Google Scholar
  7. 7.
    Malinovskaya SV, Glushkov AV, Khetselius OYu, Svinarenko AA, Mischenko EV, Florko TA (2009) Int J Quant Chem 109(14):3325Google Scholar
  8. 8.
    Glushkov AV, Loboda AV, Gurnitskaya EP, Svinarenko AA (2009) Phys Scripta T135:014022Google Scholar
  9. 9.
    Glushkov AV, Khetselius OYu, Svinarenko AA (2013) Phys Scripta T153:014029Google Scholar
  10. 10.
    Svinarenko AA (2014) J Phys Conf Ser 548:012039CrossRefGoogle Scholar
  11. 11.
    Paul S, Ho YK (2010) J Phys B At Mol Opt Phys 43:065701; Kar S, Ho YK (2011) J Phys B At Mol Opt Phys 44:015001Google Scholar
  12. 12.
    Glushkov AV (2005) Atom in electromagnetic field. KNT, KievGoogle Scholar
  13. 13.
    Yongqiang L, Jianhua W, Yong H, Jianmin Y (2008) J Phys B At Mol Opt Phys 41:145002Google Scholar
  14. 14.
    Glushkov AV, Mansarliysky VF, Khetselius OYu, Ignatenko AV, Smirnov AV, Prepelitsa GP (2017) J Phys Conf Ser 810:012034Google Scholar
  15. 15.
    Glushkov AV, Loboda AV (2007) J Appl Spectr 74:305, SpringerGoogle Scholar
  16. 16.
    Saha B, Fritzsche S (2007) J Phys B At Mol Opt Phys 40:259Google Scholar
  17. 17.
    Marrs R, Levine M, Knapp D, Henderson J (1988) Phys Rev Lett 60:1715Google Scholar
  18. 18.
    Zhang H, Sampson D, Clark R, Mann J (1988) Atom Dat Nuc Dat Tabl 37:17Google Scholar
  19. 19.
    Reed KJ (1988) Phys Rev A 37:1791; Talukder MR (2008) Appl Phys Lasers Opt 93:576Google Scholar
  20. 20.
    Smith ACH, Bannister ME, Chung YS, Djuric N, Dunn GH, Wallbank B, Woitke O (1999) Phys Scripta T80:283Google Scholar
  21. 21.
    Buyadzhi VV (2015) Photoelectronics 24:128Google Scholar
  22. 22.
    Zeng S, Liu L, Wang JG, Janev RK (2008) J Phys B At Mol Opt Phys 41:135202Google Scholar
  23. 23.
    Okutsu H, Sako T, Yamanouchi K, Diercksen GHF (2005) J Phys B At Mol Opt Phys 38:917Google Scholar
  24. 24.
    Nakamura N, Kavanagh AP, Watanabe H, Sakaue HA, Li Y, Kato D, Curell FJ, Ohtani S (2007) J Phys Conf Ser 88:012066Google Scholar
  25. 25.
    Bannister ME, Djuric N, Woitke O, Dunn GH, Chung Y-S, Smith ACH, Wallbank B, Berrington KA (1999) Int J Mass Spectr 192:39Google Scholar
  26. 26.
    Badnell NR (2007) J Phys Conf Ser 88:012070; Griffin DC, Balance CP, Mitnik DM, Berengut JC (2008) J Phys B At Mol Opt Phys 41:215201Google Scholar
  27. 27.
    Glushkov AV, Malinovskaya SV, Prepelitsa G, Ignatenko V (2005) J Phys Conf Ser 11:199Google Scholar
  28. 28.
    Malinovskaya SV, Glushkov AV, Khetselius OYu, Loboda AV, Lopatkin YuM, Svinarenko AA, Nikola LV, Perelygina TB (2011) Int J Quant Chem 111:288Google Scholar
  29. 29.
    Glushkov AV, Khetselius OYu, Loboda AV, Ignatenko AV, Svinarenko AA, Korchevsky DA, Lovett L (2008) Spectr Line Shapes. AIP Conf  Pro 1058:175Google Scholar
  30. 30.
    Buyadzhi VV, Chernyakova YuG, Antoshkina OA, Tkach TB (2017) Photoelectronics 26:94 Google Scholar
  31. 31.
    Ivanov LN, Ivanova EP (1979) Atom Dat Nucl Dat Tabl 24:95Google Scholar
  32. 32.
    Driker MN, Ivanova EP, Ivanov LN, Shestakov AF (1982) J Quant Spectr Rad Transfer 28:531Google Scholar
  33. 33.
    Ivanov LN, Letokhov VS (1985) Com Mod Phys D 4:169Google Scholar
  34. 34.
    Vidolova-Angelova E, Ivanov LN, Ivanova EP, Angelov DA (1986) J Phys B At Mol Opt Phys 19:2053Google Scholar
  35. 35.
    Ivanov LN, Ivanova EP, Aglitsky EV (1988) Phys Rep 166:315Google Scholar
  36. 36.
    Ivanova EP, Ivanov LN, Glushkov AV, Kramida AE (1985) Phys Scripta 32:513Google Scholar
  37. 37.
    Glushkov AV, Ivanov LN (1992) Phys Lett A 170:33Google Scholar
  38. 38.
    Glushkov AV, Ivanov LN, Ivanova EP (1986) Autoionization phenomena in atoms. Moscow University Press, Moscow, pp 58–160Google Scholar
  39. 39.
    Ivanova EP, Glushkov AV (1986) J Quant Spectr Rad Transfer 36:127Google Scholar
  40. 40.
    Ivanova EP, Gulov AV (1991) Atom Dat Nuc Dat Tabl 49:1Google Scholar
  41. 41.
    Ivanov LN, Ivanova EP, Knight L (1993) Phys Rev A 48:4365Google Scholar
  42. 42.
    Ivanov LN, Ivanova EP, Knight L, Molchanov AG (1996) Phys Scripta 53:653Google Scholar
  43. 43.
    Glushkov AV, Ivanov LN (1992) Preprint of ISAN. AS N-1 Moscow-TroitskGoogle Scholar
  44. 44.
    Glushkov AV, Ivanov LN (1993) J Phys B At Mol Opt Phys 26:L379Google Scholar
  45. 45.
    Glushkov AV (1990) Sov Phys J 33(1):1CrossRefGoogle Scholar
  46. 46.
    Glushkov AV (1990) J Str Chem 31(4):529CrossRefGoogle Scholar
  47. 47.
    Glushkov AV (1992) JETP Lett 55:97Google Scholar
  48. 48.
    Glushkov A V (2012) Quantum systems in chemistry and physics. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 231–252Google Scholar
  49. 49.
    Glushkov AV (2008) Relativistic quantum theory. Quantum mechanics of atomic systems. Astroprint, Odessa, p 700Google Scholar
  50. 50.
    Khestelius OYu (2008) Hyperfine structure of atomic spectra. Astroprint, Odessa, p 210Google Scholar
  51. 51.
    Glushkov AV (2013) Advances in quantum methods and applications in chemistry, physics and biology. In: Hotokka M, Maruani J, Brändas J, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 27. Springer, Cham, pp 161–177Google Scholar
  52. 52.
    Glushkov AV, Khetselius OYu, Svinarenko AA, Prepelitsa GP (2010) In: Duarte FJ (ed) Coherence and ultrashort pulsed emission, InTech, Rijeka, pp 159–186Google Scholar
  53. 53.
    Svinarenko AA, Glushkov AV, Khetselius OYu, Ternovsky VB, Dubrovskaya YuV, Kuznetsova AA, Buyadzhi VV (2017) In: Orjuela JEA (ed) Rare earth element, InTech, pp 83–104Google Scholar
  54. 54.
    Glushkov AV, Khetselius OYu, Svinarenko AA, Buyadzhi VV, Ternovsky VB, Kuznetsova AA, Bashkarev PG (2017) In: Uzunov DI (ed) Recent studies in perturbation theory, InTech, pp 131–150Google Scholar
  55. 55.
    Buyadzhi VV, Glushkov AV, Lovett L (2014) Photoelectronics 23:38Google Scholar
  56. 56.
    Buyadzhi VV, Glushkov AV, Mansarliysky VF, Ignatenko AV, Svinarenko AA (2015) Sensor Electr Microsyst Techn 12(4):27Google Scholar
  57. 57.
    Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp 525–541Google Scholar
  58. 58.
    Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Europ Phys J ST 160:195Google Scholar
  59. 59.
    Glushkov AV, Khetselius OYu, Malinovskaya SV (2008) Mol Phys 106:1257Google Scholar
  60. 60.
    Glushkov AV, Khetselius OY, Svinarenko AA (2012) Advances in the theory of quantum systems in chemistry and physics. In: Hoggan P, Maruani J, Brändas E, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 22. Springer, Dordrecht, pp 51–68Google Scholar
  61. 61.
    Glushkov AV, Khetselius OYu, Lovett L (2010) Advances in the theory of atomic and molecular systems. In: Piecuch P, Maruani J, Delgado-Barrio G,Wilson S (eds) Progress in theoretical chemistry and physics, vol 20. Springer, Dordrecht, pp 125–152Google Scholar
  62. 62.
    Glushkov AV, Khetselius YO, Loboda AV, Svinarenko AA (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp 543–560Google Scholar
  63. 63.
    Glushkov AV, Svinarenko AA, Khetselius OYu, Buyadzhi VV,  Florko TA, Shakhman AN (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 29. Springer, Cham, pp 197–217Google Scholar
  64. 64.
    Khetselius OYu, Zaichko PA, Smirnov AV, Buyadzhi VV, Ternovsky VB, Florko TA, Mansarliysky VF (2017) Quantum systems in physics, chemistry, and biology. In: Tadjer A, Pavlov R, Maruani J, Brändas E, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, Springer, Cham, pp 271–281Google Scholar
  65. 65.
    Glushkov AV, Buyadzhi VV, Kvasikova AS, Ignatenko AV, Kuznetsova AA, Prepelitsa GP, Ternovsky V B (2017) Quantum systems in physics, chemistry, and biology. In: Tadjer A, Pavlov R, Maruani J, Brändas E, Delgado-Barrio G (eds) Progress in theoretical chemistry and physics, vol 30. Springer, Cham, pp 169–180Google Scholar
  66. 66.
    Glushkov AV, Rusov VD, Ambrosov SV, Loboda AV (2003) In: Fazio G, Hanappe F (eds) New projects and new lines of research in nuclear physics. World Scientific, Singapore, pp 126–132Google Scholar
  67. 67.
    Glushkov O. Khetselius E Gurnitskaya, Loboda A, Florko VD, Sukharev Lovett L (2008) Frontiers in quantum systems in chemistry and physics. In: Wilson S, Grout PJ, Maruani J, Delgado-Barrio G, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 18. Springer, Dordrecht, pp  507–524Google Scholar
  68. 68.
    Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Khetselius OY (2006) Recent advances in the theory of chemical and physical systems. In: Julien P, Maruani J, Mayou D, Wilson S, Delgado-Barrio G (eds). Progress in theoretical chemistry and physics, vol 15. Springer, Dordrecht, pp 285–299Google Scholar
  69. 69.
    Glushkov AV, Ambrosov SV, Loboda AV, Chernyakova YuG, Svinarenko AA, Khetselius OYu (2004) Nucl Phys A Nucl Hadr Phys 734:21Google Scholar
  70. 70.
    Glushkov AV, Malinovskaya SV, Loboda AV, Shpinareva IM, Prepelitsa GP (2006) J Phys Conf Ser 35:420Google Scholar
  71. 71.
    Glushkov AV, Ambrosov SV, Loboda AV, Gurnitskaya EP, Prepelitsa GP (2005) Int J Quant Chem 104:562Google Scholar
  72. 72.
    Glushkov A, Malinovskaya S, Loboda A, Shpinareva I, Gurnitskaya E, Korchevsky D (2005) J Phys Conf Ser 11:188Google Scholar
  73. 73.
    Glushkov AV, Malinovskaya SV, Chernyakova YG, Svinarenko AA (2004) Int J Quant Chem 99:889Google Scholar
  74. 74.
    Glushkov AV, Ambrosov SV, Ignatenko AV, Korchevsky DA (2004) Int J Quant Chem 99:936Google Scholar
  75. 75.
    Glushkov AV, Malinovskaya SV, Sukharev DE, Khetselius OYu, Loboda AV, Lovett L (2009) Int J Quant Chem 109:1717Google Scholar
  76. 76.
    Khetselius OYu (2009) Int J Quant Chem 109:3330CrossRefGoogle Scholar
  77. 77.
    Khetselius OYu (2009) Phys Scripta T135:014023CrossRefGoogle Scholar
  78. 78.
    Khetselius OYu (2012) Quantum systems in chemistry and physics. In: Nishikawa K, Maruani J, Brändas E, Delgado-Barrio E, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 26. Springer, Dordrecht, pp 217–229Google Scholar
  79. 79.
    Khetselius YO (2015) Frontiers in quantum methods and applications in chemistry and physics. In: Nascimento M, Maruani J, Brändas E, Delgado-Barrio E, Piecuch P (eds) Progress in theoretical chemistry and physics, vol 29. Springer, Cham,  pp 55–76Google Scholar
  80. 80.
    Khetselius OYu (2008) Hyperfine structure of atomic spectra. Astroprint, OdessaGoogle Scholar
  81. 81.
    Khetselius OYu (2005) Hyperfine structure of radium. Photoelectronics. 14:83Google Scholar
  82. 82.
    Khetselius OYu (2012) J Phys Conf Ser 397:012012CrossRefGoogle Scholar
  83. 83.
    Khetselius OYu, Florko TA, Svinarenko AA, Tkach TB (2013) Phys Scripta T153:014037Google Scholar
  84. 84.
    Khetselius OYu (2008) Spectral line shape. AIP Conf Proc 1058:363Google Scholar
  85. 85.
    Khetselius OYu, Glushkov AV, Gurnitskaya EP, Loboda AV, Mischenko EV, Florko TA, Sukharev DE (2008) AIP Conf Proc 1058:231Google Scholar
  86. 86.
    Khetselius OYu (2007) Photoelectronics 16:129Google Scholar
  87. 87.
    Khetselius OYu, Gurnitskaya EP (2006) Sensor Electr Microsyst Techn N3, 35–39Google Scholar
  88. 88.
    Khetselius OYu, Gurnitskaya EP (2006) Sensor Electr and Microsyst Techn Issue 2:25−29Google Scholar
  89. 89.
    Feller D, Davidson ER (1981) J Chem Phys 74:3977Google Scholar
  90. 90.
    Froelich P, Davidson ER, Brändas E (1983) Phys Rev A 28:2641Google Scholar
  91. 91.
    Rittby M, Elander N, Brändas E (1983) Int J Quant Chem 23:865Google Scholar
  92. 92.
    Yan A, Wang C, Yung Y, Ya KC, Chen GH (2011) J Chem Phys 134:241103Google Scholar
  93. 93.
    Maruani J (2016) J Chin Chem Soc 63:33CrossRefGoogle Scholar
  94. 94.
    Pavlov R, Mihailov L, Velchev Ch, Dimitrova-Ivanovich M, Stoyanov Zh, Chamel N, Maruani J (2010) J Phys Conf Ser 253:012075Google Scholar
  95. 95.
    Dietz K, Heβ BA (1989) Phys Scripta 39:682Google Scholar
  96. 96.
    Kohn W, Sham LJ (1964) Phys Rev A 140:1133; Hohenberg P, Kohn W (1964) Phys Rev B 136:864Google Scholar
  97. 97.
    Gidopoulos N, Wilson S (2004) The fundamentals of electron density, density matrix and density functional theory in atoms, molecules and the solid state. In: Progress in theoretical chemistry and physics, vol 14. Springer, BerlinGoogle Scholar
  98. 98.
    Glushkov A V (2006) Relativistic and correlation effects in spectra of atomic systems. Astroprint, OdessaGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Alexander V. Glushkov
    • 1
  • Vasily V. Buyadzhi
    • 1
  • Andrey A. Svinarenko
    • 1
  • Eugeny V. Ternovsky
    • 1
  1. 1.Odessa State Environmental UniversityOdessaUkraine

Personalised recommendations