Effective Bond-Strength Indicators

  • Gui-Xiang WangEmail author
  • Yuzhe Stan Chen
  • Ya-Kun Chen
  • Yan Alexander WangEmail author
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)


To save time and computer resources, we made an attempt to design reasonable yet simple structural indicators to identify weak chemical bonds, instead of performing numerous, tedious calculations of individual bond dissociation energies (BDEs) for all bonds within a molecule. Based on the commonly available structure-property indicators for bond strength, such as bond length (R), the Mulliken interatomic electron number (MIEN), the Wiberg bond order (WBO), and BDE, we have created two new bond-strength indicators, i.e., M = MIEN/R and K = (WBO × MIEN)/R2, which shall be directly used to efficiently identify almost all weak bonds with BDE below 350 kJ/mol. If several bonds of the same type attain the same smallest values of M or K, values of the electron density at the bond critical points (ρ c ) alone can almost always pinpoint the weakest bond from the set of weak bonds, greatly reducing the amount of efforts in carrying out the calculations of the BDEs of the corresponding bonds.


Structural indicator Weakest bond Weak bond Bond energy Bond dissociation energy Bond order Explosives Trigger bond Trigger bond indicator Bond critical point Quantum theory of atoms in molecules Population analysis Counterpoise correction Basis set superposition error 



We are grateful to the grant support from the Natural Sciences and Engineering Research Council (NSERC) of Canada, the National Natural Science Foundation of China (No. 21403110), and the Natural Science Foundation of Jiangsu Province (No. BK20130755). This work was mainly carried out at UBC during G.X.W.’s one-year visit to UBC from 16 August 2012 to18 August 2013.


  1. 1.
    Xu XJ, Xiao HM, Ju XH, Gong XD, Zhu WH (2006) Computational studies on polynitrohexaazaadmantanes as potential high energy density materials (HEDMs). J Phys Chem A 110:5929–5933CrossRefPubMedGoogle Scholar
  2. 2.
    Qiu L, Xiao HM, Gong XD, Ju XH, Zhu WH (2006) Ab initio and molecular dynamics studies of crystalline TNAD (trans-1,4,5,8-Tetranitro-1,4,5,8-tetraazadecalin). J Phys Chem A 110:3797–3807CrossRefPubMedGoogle Scholar
  3. 3.
    Qiu LM, Gong XD, Wang GX, Zheng J, Xiao HM (2009) Looking for high energy density compounds among 1,3-Bishomopentaprismane derivatives with –CN, –NC, and –ONO2 groups. J Phys Chem A 113:2607–2614CrossRefPubMedGoogle Scholar
  4. 4.
    Xu XJ, Xiao HM, Gong XD, Ju XH, Chen ZX (2005) Theoretical studies on the vibrational spectra, thermodynamic properties, detonation properties and pyrolysis mechanisms for polynitroadamantanes. J Phys Chem A 109:11268–11274CrossRefPubMedGoogle Scholar
  5. 5.
    Wang GX, Shi CH, Gong XD, Xiao HM (2009) Theoretical investigation on structures, density, detonation properties and pyrolysis mechanism of the derivatives of HNS. J Phys Chem A 113:1318–1326CrossRefPubMedGoogle Scholar
  6. 6.
    Wang GX, Gong XD, Yan L, Du HC, Xu XJ, Xiao HM (2010) Theoretical studies on the structures, density, detonation properties, pyrolysis mechanisms and impact sensitivity of nitro derivatives of toluenes. J Hazard Mater 177:703–710CrossRefPubMedGoogle Scholar
  7. 7.
    Wang GX, Gong XD, Du HC, Liu Y, Xiao HM (2011) Theoretical prediction of properties of aliphatic polynitrates. J Phys Chem A 115:795–804CrossRefPubMedGoogle Scholar
  8. 8.
    Liu Y, Gong XD, Wang LJ, Wang GX, Xiao HM (2011) Substituent effects on the properties related to detonation performance and sensitivity for 2,2’,4,4’,6,6’-Hexanitroazobenzene derivatives. J Phys Chem A 115:1754–1762CrossRefPubMedGoogle Scholar
  9. 9.
    Jensen F (2007) Introduction to computational chemistry, 2nd edn. Wiley, Chichester, West Sussex, EnglandGoogle Scholar
  10. 10.
    Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566CrossRefGoogle Scholar
  11. 11.
    Simon S, Duran M, Dannenberg JJ (1996) How does basis set superposition error change the potential surfaces for hydrogen bonded dimers? J. Chem. Phys. 105:11024–11031CrossRefGoogle Scholar
  12. 12.
    Petrucci RH, Herring FG, Madura JD, Bissonette C (2011) General chemistry, 10th edn. Pearson Publishing, Toronto, Ontario, CanadaGoogle Scholar
  13. 13.
    Mulliken RS (1962) Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAO-MO population analysis. J. Chem. Phys. 36:3428–3439CrossRefGoogle Scholar
  14. 14.
    Bader RFW, Tang TH, Tal Y, Biegler-Koenig FW (1982) Properties of atoms and bonds in hydrocarbon molecules. J Am Chem Soc 104:946–952CrossRefGoogle Scholar
  15. 15.
    Bader RFW (1994) Atoms in molecules: a quantum theory. Clarendon Press, Oxford, UKGoogle Scholar
  16. 16.
    Xiao HM, Xu XJ, Qiu L (2008) Theoretical design of high energy density materials. Science Press, Beijing, ChinaGoogle Scholar
  17. 17.
    Wang GX, Gong XD, Liu Y, Du HC, Xu XJ, Xiao HM (2011) Looking for high energy density compounds applicable for propellant among the derivatives of DPO with −N3, −ONO2, and −NNO2 groups. J Comput Chem 32:943–952CrossRefPubMedGoogle Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37:785–789CrossRefGoogle Scholar
  19. 19.
    Becke AD (1992) Density-functional thermochemistry, II. The effect of the Perdew-Wang generalized-gradient correlation correction. J. Chem. Phys. 97:9173–9177CrossRefGoogle Scholar
  20. 20.
    Hariharan PC, Pople JA (1973) Influence of polarization functions on MO hydrogenation energies. Theor. Chim. Acta 28:213–222CrossRefGoogle Scholar
  21. 21.
    Wiberg KB (1968) Application of the Pople-Santry-Segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane. Tetrahedron 24:1083–1096CrossRefGoogle Scholar
  22. 22.
    Mayer I (1983) Change bond order and valence in the ab initio SCF theory. Chem Phys Lett 97:270–274CrossRefGoogle Scholar
  23. 23.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Barone V, Mennucci B, Cossi M, Scalmani G, Petersson GA, et al (2009) Gaussian 09, revision A. 02, Gaussian, Inc., Wallingford, CTGoogle Scholar
  24. 24.
    Bader RFW Atoms in molecules, McMaster University, Hamilton, Ontario, Canada. ( Accessed 3 Jan 2016)
  25. 25.
    Engel T, Reid P, Hehre W (2013) Physical chemistry, 3rd edn. Boston, USA, PearsonGoogle Scholar
  26. 26.
    Kendall RA, Dunning TH, Harrison RJ (1992) Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96:6796–6806CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Computation Institute for Molecules and MaterialsNanjing University of Science and TechnologyNanjingChina
  2. 2.Department of ChemistryUniversity of British ColumbiaVancouverCanada

Personalised recommendations