The Dirac Electron and Elementary Interactions: The Gyromagnetic Factor, Fine-Structure Constant, and Gravitational Invariant: Deviations from Whole Numbers

  • Jean MaruaniEmail author
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)


In previous papers, we revisited the Dirac equation and conjectured that the electron can be viewed as a massless charge spinning at light speed, this internal motion being responsible for the rest mass involved in external motions and interactions. Implications of this concept on basic properties such as time, space, electric charge, and magnetic moment were considered. The present paper investigates the deviations of the resulting gyromagnetic factor, fine-structure constant, and gravitational invariant from their integer approximates, and their implication in a better understanding of the electromagnetic, gravitational, and other interactions.


Dirac equation Spin momentum Magnetic moment Matter antimatter Wave beat Zitterbewegung Light velocity Compton diameter Planck units Catalan numbers Casimir force Nuclear forces Gyromagnetic factor Fine-structure constant Gravitational invariant Quantum electrodynamics General relativity 



I wish to thank the colleagues who helped me clarify these ideas at QSCP meetings and elsewhere. Erkki Brändas, Uzi Kaldor, John Macken, Francis Sanchez, and Ivan Todorov made especially useful comments. Thanks are due to my wife, Marja Rantanen, for stimulating my speculations with inspiring piano playing.


  1. 1.
    Maruani J (2012) The Dirac electron: spin, Zitterbewegung, the Compton wavelength, and the kinetic foundation of rest mass. Prog Theor Chem Phys B 26:23–46CrossRefGoogle Scholar
  2. 2.
    Maruani J (2013) The Dirac electron as a massless charge spinning at light speed: implications on some basic physical concepts. Prog Theor Chem Phys B 27:53–74CrossRefGoogle Scholar
  3. 3.
    Maruani J (2015) The Dirac electron as a privileged road to the understanding of quantum matter. Quantum Matter 4:3–11CrossRefGoogle Scholar
  4. 4.
    Maruani J (2016) The Dirac electron: from quantum chemistry to holistic cosmology. J Chin Chem Soc 63:33–48 and references thereinCrossRefGoogle Scholar
  5. 5.
    Thaller B (1992) The Dirac equation. Springer, BerlinCrossRefGoogle Scholar
  6. 6.
    Sakurai J (1967) Advanced quantum mechanics. Addison-Wesley, Reading, MA, ch. 3Google Scholar
  7. 7.
    Feynman RP (1998) Quantum electrodynamics. Addison-Wesley, Reading, MAGoogle Scholar
  8. 8.
    Weinberg S (1995) The quantum theory of fields. Cambridge U PGoogle Scholar
  9. 9.
    Dirac PAM (1928) Quantum theory of the electron. Proc Roy Soc (London) A 117:610–624; Quantised singularities in the electromagnetic field: ibid (1931) A 133:60–72; Theory of electrons and positrons. Nobel lectures (1933) pp 320–325Google Scholar
  10. 10.
    Dirac PAM The principles of quantum mechanics. Clarendon Press, Oxford, 1st edn 1930, 4th edn 1958, chs 11–12Google Scholar
  11. 11.
    de Broglie L (1924) Recherches sur la Théorie des Quanta. Thesis, Sorbonne, Paris; Ann Phys 10(III):22–128Google Scholar
  12. 12.
    Compton AH (1923) A quantum theory of the scattering of x-rays by light elements. Phys Rev 21:483–502CrossRefGoogle Scholar
  13. 13.
    Brandsden BH, Joachain CJ (1983) Physics of atoms and molecules. Longman, Harlow, England, 1st edn, chs 1 and 5Google Scholar
  14. 14.
    Schrödinger E (1930) Über die kräftefreie Bewegung in der relativistischen Quantenmechanik: Sitzungsber. Preuss Akad Wiss Berlin, Phys-Math Kl 24:418–428; Zur Quantendynamik des Elecktrons: ibid (1931) 25:63–72Google Scholar
  15. 15.
    de Broglie L (1934) l’Electron Magnétique: Théorie de Dirac, Hermann, Paris, chs 9–22Google Scholar
  16. 16.
    Haisch B, Rueda A, Puthoff HE (1994) Inertia as a zero-point field Lorentz force. Phys Rev A 49:678–694 and references thereinCrossRefPubMedGoogle Scholar
  17. 17.
    Barut AO, Bracken AJ (1981) Zitterbewegung and the internal geometry of the electron. Phys Rev D 23:2454–2463; D 24:3333–3342; Barut AO, Zanghi N (1984) Classical model of the Dirac electron. Phys Rev Lett 52:2009–2012; Barut AO, Pavšič M (1987) Quantization of the Zitterbewegung in the Schrödinger picture. Class Quant Grav 4:L131–L136Google Scholar
  18. 18.
    Todorov I (2015) Hyperlogarithms and periods in Feynman amplitudes. Opening lecture at QSCP XX, Varna; published as CERN-TH-2016–042; and private communicationGoogle Scholar
  19. 19.
    Dehmelt H (1993) Is the electron a composite particle? an experiment. Hyperfine Interact 81:1–3; updated and condensed version of the Nobel lecture in Les Prix Nobel 1989, Stockholm, 1990, p 95Google Scholar
  20. 20.
    Maruani J (1980) Magnetic resonance and related techniques. In: Becker P (ed) Electron and magnetization densities in molecules and crystals, NATO ASI series. Plenum, and references thereinCrossRefGoogle Scholar
  21. 21.
    Sommerfeld A (1919) Atombau und Spektrallinien. Friedrich Vieweg, Braunschweig; translated as Atomic structure and spectral lines. Methuen, London, 1923; and references thereinGoogle Scholar
  22. 22.
    Eddington AS (1935) New pathways in science, Cambridge U P, ch. 11Google Scholar
  23. 23.
    Kaldor U, Eliav E, Landau A (2004) Relativistic electronic structure theory. Elsevier, ch. 2, and private communicationGoogle Scholar
  24. 24.
    Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207CrossRefGoogle Scholar
  25. 25.
    Kragh H (2003) Magic number—a partial history of the fine-structure constant. Arch Hist Exact Sci 57:395–431Google Scholar
  26. 26.
    Gilson JG (1996) Calculating the fine-structure constant. Spec Sci Tech, 23 ppGoogle Scholar
  27. 27.
    Sanchez FM, Kotov VA, Bizouard C (2009) Evidence for a steady-state, holographic, tachyonic, and supersymmetric cosmology. GED 20(3):43–53; Sanchez FM (2017) A coherent resonant cosmology approach and its implications in microphysics and biophysics. Prog Theor Chem Phys B 30:375–407, references therein, and private communicationGoogle Scholar
  28. 28.
    Bastin T, Kilmister CW (1995) Combinatorial physics. World Scientific, SingaporeGoogle Scholar
  29. 29.
    Carr BJ, Rees MJ (1979) The anthropic principle and the structure of the physical world. Nature 278:605–612. See also: Barrow JD, Tipler FK (1986) The anthropic cosmological principle. Oxford U P, and references thereinGoogle Scholar
  30. 30.
    Einstein A (1916) Die Grundlage der allgemeinen Relativitätstheorie. Ann Phys (Leipzig) 49:769–823. See also: Eddington AS (1920) Space, time, and gravitation. Cambridge U P; French edition completed with an updated mathematical presentation of general relativity. Hermann, Paris, 1921. See also: Special issue commemorating Einstein A (2005). Ann Phys (Leipzig) 14:1–204Google Scholar
  31. 31.
    Chapman TC, Leiter DJ (1976) On the generally covariant Dirac equation. Am J Phys 44:858–862CrossRefGoogle Scholar
  32. 32.
    Sachs M (1986) Quantum mechanics from general relativity. Reidel, DordrechtCrossRefGoogle Scholar
  33. 33.
    Macken JA (2013) The universe is only spacetime. http://www.onlyspacetime/home; see also: Spacetime-based foundation of quantum mechanics and general relativity. Prog Theor Chem Phys A (2015) 29:219–245; and private communication
  34. 34.
    Pavšič M (2001) The landscape of theoretical physics: a global view. Kluwer, pp 347–352. See also:
  35. 35.
    Milton KA (2001) The Casimir effect: physical manifestations of zero-point energy. World Scientific, SingaporeGoogle Scholar
  36. 36.
    Genet C, Intravaia F, Lambrecht A, Reynaud S (2004) Electromagnetic vacuum fluctuations, Casimir and van der Waals forces. Annales Fondation Louis de Broglie 29:311–328Google Scholar
  37. 37.
    André J-M, Jonnard Ph (2011) Effective mass of photons in a one-dimensional photonic crystal. Phys Scr 84:035708 and references thereinCrossRefGoogle Scholar
  38. 38.
    Brown LM, Rechenberg H (1996) The origin of the concept of nuclear forces. Institute of Physics Publishing, Bristol and PhiladelphiaGoogle Scholar
  39. 39.
    Beringer J et al (2012) Particle data group. Phys Rev D 86, 010001; for updates, see:
  40. 40.
    It seems that Catalan numbers were known in the Antiquity. Not only the conspicuous 3 and 7 and their sum 10 (and various products and multiples), which occur in many traditions, but also 127 (the number of provinces in Ahasuerus’ empire, cf Esther 1, 1) and the sum 137 (the number of years Abraham’s elder son lived, cf Genesis 25, 17). The hypostyle room of Ammon’s temple in Karnak, Egypt, has a total of 136 columns, the number that Eddington initially proposed for the electric constant a [22]Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Chimie Physique-Matière et RayonnementCNRS & UPMCParisFrance

Personalised recommendations