Adducts of Arzanol with Explicit Water Molecules: An Ab Initio and DFT Study

  • Liliana MamminoEmail author
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)


Arzanol (C22H26O7) is a naturally occurring acylphloroglucinol present in Helichrysum italicum. It is the major responsible of its medicinal properties, which include anti-oxidant properties. In the arzanol molecule, the R of the COR group characterising acylphloroglucinols is a methyl group, and the two substituents in meta to COR are an α-pyrone ring, bonded to the benzene ring through a methylene bridge, and a prenyl chain. The high number of hydrogen bond donor and acceptor sites in the molecule entails an investigation taking into account solute-solvent hydrogen bonds in an explicit manner. The current work considers adducts of arzanol with explicit water molecules for a representative selection of its conformers. Adducts with one water molecule attached in turn to each of the H-bond donors or acceptors were calculated to estimate the strength with which each site can bind a water molecule. Adducts with varying numbers of water molecules were calculated to identify preferred arrangements of the water molecules around the various sites and around the molecule as a whole. These adducts also suggest possible geometries for the first solvation layer. All the adducts were calculated at the HF/6-31G(d, p) and the DFT/B3LYP/6-31+G(d, p) levels, with fully relaxed geometry.


Acylphloroglucinols Adducts with explicit water molecules Arzanol Hydrogen bonding Solute-solvent interactions 

Supplementary material

432170_1_En_16_MOESM1_ESM.pdf (5.9 mb)
432170_1_En_16_MOESM2_ESM.pdf (3.8 mb)
432170_1_En_16_MOESM3_ESM.pdf (279 kb)
432170_1_En_16_MOESM4_ESM.pdf (1.2 mb)


  1. 1.
    Appendino G, Ottino M, Marquez N, Bianchi F, Giana A, Ballero M, Sterner O, Fiebich BL, Munoz E (2007) J Nat Prod 70:608–612CrossRefPubMedGoogle Scholar
  2. 2.
    Bauer J, Koeberle A, Dehm F, Pollastro F, Appendino G, Northoff H, Rossi A, Sautebin L, Werz O (2011) Biochem Pharmacol 81:259–268CrossRefPubMedGoogle Scholar
  3. 3.
    Rosa A, Pollastro F, Atzeri A, Appendino G, Melis MP, Deiana M, Incani A, Loru D, Dessì MA (2011) Chem Phys Lipids 164:24–32CrossRefPubMedGoogle Scholar
  4. 4.
    Singh IP, Bharate SB (2006) Nat Prod Rep 23:558–591CrossRefGoogle Scholar
  5. 5.
    Mammino L, (2017) Molecules.22, 1294.
  6. 6.
    Mammino L, Kabanda MM (2009) J Mol Struct (Theochem) 901:210–219CrossRefGoogle Scholar
  7. 7.
    Mammino L, Kabanda MM (2009) J Phys Chem A 113(52):15064–15077CrossRefPubMedGoogle Scholar
  8. 8.
    Mammino L, Kabanda MM (2012) Int J Quant Chem 112:2650–2658CrossRefGoogle Scholar
  9. 9.
    Kabanda MM, Mammino L (2012) Int J Quant Chem 112:3691–3702CrossRefGoogle Scholar
  10. 10.
    Mammino L, Kabanda MM (2013) Molec Simul 39(1):1–13CrossRefGoogle Scholar
  11. 11.
    Tomasi J, Persico M (1994) Chem Rev 94:2027–2094CrossRefGoogle Scholar
  12. 12.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3093CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mennucci B (2010) J Phys Chem Lett 1:1666–1674CrossRefGoogle Scholar
  14. 14.
    Alagona G, Ghio C (2002) Int J Quant Chem 90:641–656CrossRefGoogle Scholar
  15. 15.
    Mammino L (2009) Chem Phys Letters 473:354–357CrossRefGoogle Scholar
  16. 16.
    Mammino L, Kabanda MM (2007) J Mol Struct (Theochem) 805:39–52CrossRefGoogle Scholar
  17. 17.
    Mammino L, Kabanda MM (2010) Int J Quant Chem 110(13):2378–2390Google Scholar
  18. 18.
  19. 19.
    Mammino L, Kabanda MM (2009) WSEAS Transact Biol Biomed 6(4):79–88Google Scholar
  20. 20.
    Mammino L, Kabanda MM (2008) Int J Quant Chem 108:1772–1791CrossRefGoogle Scholar
  21. 21.
    Mammino L, Kabanda MM (2012) Int J Biol Biomed Engin 1(6):114–133Google Scholar
  22. 22.
    Mammino L (2013) Int J Biol Biomed Engin 2(7):15–25Google Scholar
  23. 23.
    Mammino L (2013) J Molec Model 19:2127–2142CrossRefGoogle Scholar
  24. 24.
    Mammino L (2014) Curr Bioact Compd 10(3):163–180CrossRefGoogle Scholar
  25. 25.
    Mammino L (2015) Current Phys Chem 5:274–293CrossRefGoogle Scholar
  26. 26.
    Becke AD (1992) J Chem Phys 96:9489CrossRefGoogle Scholar
  27. 27.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  28. 28.
    Lee C, Yang W, Parr RG (1998) Phys Rev B 37:785–789CrossRefGoogle Scholar
  29. 29.
    Alagona G, Ghio C (2006) J Phys Chem A 110:647–659CrossRefPubMedGoogle Scholar
  30. 30.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  31. 31.
    Alagona G, Ghio C (2009) J Phys Chem A 113:15206–15216CrossRefPubMedGoogle Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian Inc, PittsburghGoogle Scholar
  33. 33.
    Mammino L, Kabanda MM (2011) Int J Quant Chem 111:3701–3716Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of VendaThohoyandouSouth Africa

Personalised recommendations