A Theoretical Study of Covalent Bonding Formation Between Helium and Hydrogen

  • Taku OnishiEmail author
Conference paper
Part of the Progress in Theoretical Chemistry and Physics book series (PTCP, volume 31)


In order to investigate chemical bonding between helium and hydrogen in the He–H model, coupled-cluster calculations were performed. In this study, three different hydrogen formal charges (positive, neutral and negative) were considered. In the case of positive hydrogen, it has been concluded that covalent bonding is formed between helium 1s orbital and hydrogen 1s orbital. Zero-point vibration energy was smaller than dissociation energy. It has been concluded that positive hydrogen is kept fixed at optimized structure.


Helium Hydrogen Molecular orbital Covalent bonding Chemical bonding rule 



This work was supported by the Research Council of Norway (RCN) through CoE Grant No. 179568/V30 (CTCC) and through NOTUR Grant No. NN4654 K for HPC resources. The author would like to thank Prof. Trygve Helgaker and Prof. Josef Paldus for valuable comments.


  1. 1.
    Lange KK, Tellgren EI, Hoffmann MR, Helgaker T (2012) Science 337:327CrossRefPubMedGoogle Scholar
  2. 2.
    Tellgren EI, Reine SS, Helgaker T (2012) Phys Chem Chem Phys 14:9492CrossRefPubMedGoogle Scholar
  3. 3.
    Tao J, Perdew JP (2005) J Chem Phys 122:114102CrossRefPubMedGoogle Scholar
  4. 4.
    Zhao Y, Truhlar DG (2006) J Phys Chem A 110:5121CrossRefPubMedGoogle Scholar
  5. 5.
    Kamiya M, Tsuneda T, Hirao K (2002) J Chem Phys 117:6010CrossRefGoogle Scholar
  6. 6.
    Lotrich VF, Bartrett RJ, Grabowski I (2005) Chem Phys Lett 405:43CrossRefGoogle Scholar
  7. 7.
    Snook I, Per MC, Russo SP (2008) J Chem Phys 129:164109CrossRefPubMedGoogle Scholar
  8. 8.
    Allen MJ, Tozer DJ (2002) J Chem Phys 117:11113CrossRefGoogle Scholar
  9. 9.
    Onishi T (2016) J Chin Chem Soc 63:83CrossRefGoogle Scholar
  10. 10.
    Onishi T (2016) AIP Conf Proc 1790:02002Google Scholar
  11. 11.
    Onishi T (2012) Adv Quant Chem 64:31CrossRefGoogle Scholar
  12. 12.
    Onishi T (2015) Adv Quant Chem 70:31CrossRefGoogle Scholar
  13. 13.
    Helgaker T, Jorgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, p 648Google Scholar
  14. 14.
    Bartlett R, Musial M (2007) Rev Mod Phys 79:291CrossRefGoogle Scholar
  15. 15.
    Woon DE, Dunning TH Jr (1994) J Chem Phys 100:2975CrossRefGoogle Scholar
  16. 16.
    Gaussian 09, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CTGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Ultimate Technology on Nano-electronics, Mie UniversityMieJapan
  2. 2.Centre for Theoretical and Computational Chemistry (CTCC)Department of Chemistry, University of OsloOsloNorway
  3. 3.Department of Applied PhysicsOsaka UniversityOsakaJapan

Personalised recommendations