IT Collaboration Based on Actor Network Theory: Actors Identification Through Data Quality

Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

IT collaboration involves exchanging information and data within a network with several actors in order to achieve business objectives. Such cooperation is generally ensured by building a collaborative network. This work presents an approach of actors identification through data quality in Actor-Network mode of collaboration. Indeed, data quality is one of the important characteristics which expose the actor importance in the network. We investigate the translation process of ANT (Actor Network Theory), while focusing on the problematization phase in which actor-networks are identified according to the data quality level provided, and then translating this level into cost and analyzing all possible coalitions using cooperative game. The findings will allow identifying which coalitions enhance data quality. The build of such actor-network depends therefore on both data quality and the operating cost of these data between systems.

Keywords

Actor Network Theory Data quality Business collaboration network Cooperative game theory Shapley value 

References

  1. 1.
    Benqatla, M., Chikhaoui, D., Bounabat, B.: Actor network theory as a collaborative mode: the contribution of game theory in the interessement phase (2016)Google Scholar
  2. 2.
    Aisopos, F., Tserpes, K., Kardara, M., Panousopoulos, G., Phillips, S., Salamouras, S.: Information exchange in business collaboration using grid technologies. Identity Inf. Soc. 2(2), 189–204 (2009)CrossRefGoogle Scholar
  3. 3.
    Callon, M.: Some elements of a sociology of translation: domestication of the scallops and fishermen of St. Brieuc Bay. In: Law, J. (ed.) Power Action and Belief: A New Sociology of Knowledge? pp. 196–233. Routledge, London (1986)Google Scholar
  4. 4.
    Dameri, R.P.: From IT compliance cost to IT governance benefits: an Italian business case. In: Management of the Interconnected World (2010)Google Scholar
  5. 5.
    Shapley, L.S.: A value for n-person games. In: Kuhn, H., Tucker, A.W. (eds.) Contributions to the Theory of Games, II. Princeton University Press, Princeton (1953)Google Scholar
  6. 6.
    Goulet, F., Vinck, D.: Innovation through withdrawal contribution to a sociology of detachment. Revue française de sociologie (English) 53, 117–146 (2012)CrossRefGoogle Scholar
  7. 7.
    Chinowsky, P.S., Diekmann, J., O’Brien, J.: Project organizations as social networks. J. Constr. Eng. Manag. 136, 452–458 (2010)CrossRefGoogle Scholar
  8. 8.
    Callon, M.: Sociologie de la traduction. In: Akrich, M., Callon, M., Latour, B. (eds.) Sociologie de la traduction- textes fondateur. Mines Paris (2006)Google Scholar
  9. 9.
    Mouritsen, J., Larsen, H.T., Bukh, P.N.: Intellectual Capital and the “capable firm”: narrating, visualizing and numbering for managing knowledge. Account. Organizations Soc. 26(7–8), 735–762 (2001)CrossRefGoogle Scholar
  10. 10.
    Parung, J., Bititci, U.S.: A conceptual metric for managing collaborative networks. J. Model. Manag. 1(2), 116–136 (2006)CrossRefGoogle Scholar
  11. 11.
    Camarinha-Matos, L.M., Afsarmanesh, H.: J. Intell. Manuf. 16, 439 (2005).  https://doi.org/10.1007/s10845-005-1656-3 CrossRefGoogle Scholar
  12. 12.
    International Association for Information and Data Quality (2015). http://iaidq.org/main/glossary.shtml
  13. 13.
    Pipino, L.L., Lee, Y.W., Wang, R.Y.: Data quality assessment. Commun. ACM 45, 211–218 (2002)CrossRefGoogle Scholar
  14. 14.
    Aladwani, A.M., Palvia, P.C.: Developing and validating an instrument for measuring user-perceived web quality. Inf. Manag. 39(6), 467–476 (2002)CrossRefGoogle Scholar
  15. 15.
    Batini, C., Comerio, M., Viscusi, G.: Managing quality of large set of conceptual schemas in public administration: methods and experiences. In: Model and Data Engineering, pp. 31–42. Springer, Heidelberg (2012)Google Scholar
  16. 16.
    Scannapieco, M., Catarci, T.: Data quality under a computer science perspective. Archivi Comput. 2, 1–15 (2002)Google Scholar
  17. 17.
    Närman, P., Johnson, P., Ekstedt, M., Chenine, M., König, J.: Enterprise architecture analysis for data accuracy assessments. In: Enterprise Distributed Object Computing Conference (2009)Google Scholar
  18. 18.
    Agndal, H., Nilsson, U.: Interorganizational cost management in the exchange process. Manag. Account. Res. 20, 85–101 (2009)CrossRefGoogle Scholar
  19. 19.
    Grabisch, M., Funaki, Y.: A coalition formation value for games with externalities. Version revise - Documents de travail du Centre d’Economie de la Sorbonne 2008. 76 - ISSN: 1955-611X, <halshs-00344797v2> (2011)Google Scholar
  20. 20.
    Williamson, Oe: Transaction-cost economics: the governance of contractual relations. J. Law Econ. 22(20), 233–261 (1979)CrossRefGoogle Scholar
  21. 21.
    Shin, D.H.: Convergence and divergence: Policy making about the convergence of technology in Korea. Government Inf. Q. 27, 147–160 (2010)CrossRefGoogle Scholar
  22. 22.
    Latour, B.: We have never been modern. Harvest Wheatsheaf, Hemel Hempstead (1993)Google Scholar
  23. 23.
    Belhiah, M., Benqatla, M.S., Bounabat, B.: Decision support system for implementing data quality projects. In: Helfert, M., Holzinger, A., Belo, O., Francalanci, C. (eds.) Data Management Technologies and Applications, DATA 2015 (2016)Google Scholar
  24. 24.
    Camarinha-Matos, L.M., Afsarmanesh, H. (eds.): Collaborative Networks: Reference Modeling. Springer Science & Business Media (2008)Google Scholar
  25. 25.
    Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative networks: a new scientific discipline. J. Intell. Manuf. 16, 439–452 (2005)CrossRefGoogle Scholar
  26. 26.
    Ahuja, G.: Collaboration networks, structural holes, and innovation: a longitudinal study. Adm. Sci. Q. 45, 425–455 (2000)CrossRefGoogle Scholar
  27. 27.
    Park, H., Han, S.H.: Impact of inter-firm collaboration networks in international construction projects: a longitudinal study. In: Construction Research Congress 2012 (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Alquasadi Team, Ensias Admir Laboratory, Rabat IT CenterMohammed V UniversityRabatMorocco

Personalised recommendations