MultiPrime Cloud-RSA Scheme to Promote Data Confidentiality in the Cloud Environment

  • Khalid El Makkaoui
  • Abderrahim Beni-Hssane
  • Abdellah Ezzati
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 37)

Abstract

Homomorphic encryption can be considered as an effective tool to overcome concerns over the confidentiality of sensitive data in the cloud. Since cloud environment is more threatened by attacks and since cloud consumers often use lightweight devices to access to cloud services, the homomorphic schemes must be promoted to work efficiently in terms of running time and security level. At EMENA-TSSL’16, we boosted the standard RSA cryptosystem at security level, Cloud-RSA. In this article, we suggest a fast variant of the Cloud-RSA for speeding up the Cloud-RSA algorithms. The fast variant is based on modifying the Cloud-RSA modulus structure and using the Chinese remainder theorem to decrypt.

Keywords

Cloud computing Homomorphic encryption Confidentiality Speedup Cloud-RSA Chinese remainder theorem (CRT) 

References

  1. 1.
    El Makkaoui, K., Ezzati, A., Beni-Hssane, A., Motamed, C.: Cloud security and privacy model for providing secure cloud services. In: 2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech), pp. 81–86. IEEE (2016)Google Scholar
  2. 2.
    Xiang, C., Tang, C.: Efficient outsourcing schemes of modular exponentiations with checkability for untrusted cloud server. J. Ambient Intell. Humaniz. Comput. 6(1), 131–139 (2015)CrossRefGoogle Scholar
  3. 3.
    Bennasar, H., Bendahmane, A., Essaaidi, M.: An overview of the state-of-the-art of cloud computing cyber-security. In: International Conference on Codes, Cryptology, and Information Security, pp. 56–67. Springer, Cham (2017)Google Scholar
  4. 4.
    Kiraz, M.S.: A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing. J. Ambient Intell. Humaniz. Comput. 7(5), 731–760 (2016)CrossRefGoogle Scholar
  5. 5.
    Alam, M., Emmanuel, N., Khan, T., Xiang, Y., Hassan, H.: Garbled role-based access control in the cloud. J. Ambient Intell. Humaniz. Comput. 8, 1–14 (2017)Google Scholar
  6. 6.
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. Found. Secur. Comput. 4, 169–180 (1978)MathSciNetGoogle Scholar
  7. 7.
    Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31, 469–472 (1985)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    El Makkaoui, K., Beni-Hssane, A., Ezzati, A.: Cloud-ElGamal: an efficient homomorphic encryption scheme. In: 2016 International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 63–66. IEEE (2016)Google Scholar
  10. 10.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: EUROCRYPT 1999, pp. 223–238 (1999)Google Scholar
  11. 11.
    El Makkaoui, K., Ezzati, A., Beni-Hssane, A.: Securely adapt a Paillier encryption scheme to protect the data confidentiality in the cloud environment. In: Proceedings of the International Conference on Big Data and Advanced Wireless Technologies. ACM (2016)Google Scholar
  12. 12.
    Gentry, C.: A fully homomorphic encryption scheme. Doctoral Thesis. University of Stanford (2009). http://crypto.stanford.edu/craig
  13. 13.
    Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: ASIACRYPT 2016, vol. 10031, pp. 3–33 (2016)Google Scholar
  14. 14.
    El Makkaoui, K., Ezzati, A, Beni-Hssane, A.: Cloud-RSA: an enhanced homomorphic encryption scheme. In: Europe and MENA Cooperation Advances in Information and Communication Technologies, pp. 471–480. Springer, Cham (2017)Google Scholar
  15. 15.
    El-Yahyaoui, A., Elkettani, M.D.: Fully homomorphic encryption: state of art and comparison. Int. J. Comput. Sci. Inf. Secur. 14(4), 159–167 (2016)Google Scholar
  16. 16.
    Collins, T., Hopkins, D., Langford, S., Sabin, M.: Public Key Cryptographic Apparatus and Method. US Patent #5,848,159 (1997)Google Scholar
  17. 17.
    Wang, X., Xu, G., Wang, M., Meng, X.: Mathematical Foundations of Public Key Cryptography. CRC Press, Boca Raton (2015)CrossRefMATHGoogle Scholar
  18. 18.
    McGregor, C., Nimmo, J., Stothers, W.: Fundamentals of University Mathematics. Elsevier, Amsterdam (2010)CrossRefMATHGoogle Scholar
  19. 19.
    Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cambridge University Press, Cambridge (2005)CrossRefMATHGoogle Scholar
  20. 20.
    Lenstra, A.K., Lenstra, H.W. (eds.): The Development of the Number Field Sieve, pp. 11–42. Springer, Heidelberg (1993)MATHGoogle Scholar
  21. 21.
    Lenstra Jr., H.W.: Factoring integers with elliptic curves. Annal. Math. 126, 649–673 (1987)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    ANSI Standard X9.31-1998. Digital Signatures Using Reversible Public Key Cryptography for the Financial Services Industry (rDSA)Google Scholar
  23. 23.
    Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Trans. Info. Theor. 36(3), 553–558 (1990)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Khalid El Makkaoui
    • 1
  • Abderrahim Beni-Hssane
    • 2
  • Abdellah Ezzati
    • 1
  1. 1.LAVETE Laboratory, FSTUniv Hassan 1SettatMorocco
  2. 2.LAROSERI Laboratory, Department of Computer Science, Sciences FacultyChouaïb Doukkali UniversityEl JadidaMorocco

Personalised recommendations