Advertisement

Treating Age-Related Diseases with Somatic Stem Cells

  • Robert W. Brooks
  • Paul D. Robbins
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1056)

Abstract

Life expectancy in the developed world has advanced beyond the number of years in which healthy tissue homeostasis can be maintained, and as a result, the number of persons with severe and debilitating chronic illnesses, including cancer, diabetes, osteoarthritis, osteoporosis, neurodegenerative and cardiovascular disease has continued to rise. One of the key underlying causes for the loss in the ability to replenish damaged tissues is the qualitative and quantitative decline in somatic stem cell populations. A concerted effort to understand why aging adult stem cells fail to maintain “stem” potential while simultaneously developing new strategies and therapeutic interventions to prevent or reverse age-dependent stem cell decline is required to improve the overall healthspan of our rapidly aging population. This review focuses on what drives stem cell dysfunction with age, the contribution of stem cell dysfunction in driving aging and therapeutic approaches using stem cells to treat aging.

Keywords

Stem cells Senescence Aging Senolytics Mesenchymal Stem Cells 

References

  1. 1.
    Ward BW, Schiller JS, Goodman RA (2014) Multiple chronic conditions among US adults: a 2012 update. Prev Chronic Dis 11:E62PubMedPubMedCentralGoogle Scholar
  2. 2.
    Goldman DP, Jay Olshansky S (2013) Delayed aging versus delayed disease: a new paradigm for public health. Public Policy Aging Rep 23:16–18CrossRefGoogle Scholar
  3. 3.
    Homem CC, Repic M, Knoblich JA (2015) Proliferation control in neural stem and progenitor cells. Nat Rev Neurosci 16:647–659PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Maredziak M, Marycz K, Tomaszewski KA, Kornicka K, Henry BM (2016) The influence of aging on the regenerative potential of human adipose derived mesenchymal stem cells. Stem Cells Int 2016:2152435PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Song M, Lavasani M, Thompson SD, Lu A, Ahani B, Huard J (2013) Muscle-derived stem/progenitor cell dysfunction in Zmpste24-deficient progeroid mice limits muscle regeneration. Stem Cell Res Ther 4:33PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang J, Lian Q, Zhu G, Zhou F, Sui L, Tan C, Mutalif RA, Navasankari R, Zhang Y, Tse HF, Stewart CL, Colman A (2011) A human iPSC model of Hutchinson Gilford Progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8:31–45PubMedCrossRefGoogle Scholar
  8. 8.
    Aleem E, Arceci RJ (2015) Targeting cell cycle regulators in hematologic malignancies. Front Cell Dev Biol 3:16PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lavasani M, Robinson AR, Lu A, Song M, Feduska JM, Ahani B, Tilstra JS, Feldman CH, Robbins PD, Niedernhofer LJ, Huard J (2012) Muscle-derived stem/progenitor cell dysfunction limits healthspan and lifespan in a murine progeria model. Nat Commun 3:608PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL (2013) Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 123:966–972PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Munoz-Espin D, Canamero M, Maraver A, Gomez-Lopez G, Contreras J, Murillo-Cuesta S, Rodriguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M (2013) Programmed cell senescence during mammalian embryonic development. Cell 155:1104–1118PubMedCrossRefGoogle Scholar
  12. 12.
    Shaw AC, Joshi S, Greenwood H, Panda A, Lord JM (2010) Aging of the innate immune system. Curr Opin Immunol 22:507–513PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Telgenhoff D, Shroot B (2005) Cellular senescence mechanisms in chronic wound healing. Cell Death Differ 12:695–698PubMedCrossRefGoogle Scholar
  14. 14.
    Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, Khazaie K, Miller JD, van Deursen JM (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:184–189PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Baar MP, Brandt RM, Putavet DA, Klein JD, Derks KW, Bourgeois BR, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA, van der Pluijm I, Essers J, van Cappellen WA, van IJcken WF, Houtsmuller AB, Pothof J, de Bruin RW, Madl T, Hoeijmakers JH, Campisi J, de Keizer PL (2017) Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169:132–47.e16PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Chang J, Wang Y, Shao L, Laberge RM, Demaria M, Campisi J, Janakiraman K, Sharpless NE, Ding S, Feng W, Luo Y, Wang X, Aykin-Burns N, Krager K, Ponnappan U, Hauer-Jensen M, Meng A, Zhou D (2016) Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med 22:78PubMedCrossRefGoogle Scholar
  18. 18.
    Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, O’Hara SP, LaRusso NF, Miller JD, Roos CM, Verzosa GC, LeBrasseur NK, Wren JD, Farr JN, Khosla S, Stout MB, McGowan SJ, Fuhrmann-Stroissnigg H, Gurkar AU, Zhao J, Colangelo D, Dorronsoro A, Ling YY, Barghouthy AS, Navarro DC, Sano T, Robbins PD, Niedernhofer LJ, Kirkland JL (2015) The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:644PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Roos CM, Zhang B, Palmer AK, Ogrodnik MB, Pirtskhalava T, Thalji NM, Hagler M, Jurk D, Smith LA, Casaclang-Verzosa G, Zhu Y, Schafer MJ, Tchkonia T, Kirkland JL, Miller JD (2016) Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell 15:973PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wang Y, Chang J, Liu X, Zhang X, Zhang S, Zhang X, Zhou D, Zheng G (2016) Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY) 8:2915–2926CrossRefGoogle Scholar
  21. 21.
    Zhu Y, Doornebal EJ, Pirtskhalava T, Giorgadze N, Wentworth M, Fuhrmann-Stroissnigg H, Niedernhofer LJ, Robbins PD, Tchkonia T, Kirkland JL (2017) New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463. Aging (Albany NY) 9:955–963Google Scholar
  22. 22.
    Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, Pirtskhalava T, Giorgadze N, Johnson KO, Giles CB, Wren JD, Niedernhofer LJ, Robbins PD, Kirkland JL (2015) Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15:428CrossRefGoogle Scholar
  23. 23.
    Flores I, Blasco MA (2010) The role of telomeres and telomerase in stem cell aging. FEBS Lett 584:3826–3830PubMedCrossRefGoogle Scholar
  24. 24.
    Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96:1020–1024PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Park Y, Gerson SL (2005) DNA repair defects in stem cell function and aging. Annu Rev Med 56:495–508PubMedCrossRefGoogle Scholar
  26. 26.
    Pazhanisamy SK (2009) Stem cells, DNA damage, ageing and cancer. Hematol Oncol Stem Cell Ther 2:375–384PubMedCrossRefGoogle Scholar
  27. 27.
    Sperka T, Wang J, Rudolph KL (2012) DNA damage checkpoints in stem cells, ageing and cancer. Nat Rev Mol Cell Biol 13:579–590PubMedCrossRefGoogle Scholar
  28. 28.
    Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S, Sobotta MC, Moehrle B, Brocks D, Bayindir I, Kaschutnig P, Muedder K, Klein C, Jauch A, Schroeder T, Geiger H, Dick TP, Holland-Letz T, Schmezer P, Lane SW, Rieger MA, Essers MA, Williams DA, Trumpp A, Milsom MD (2015) Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 520:549–552PubMedCrossRefGoogle Scholar
  29. 29.
    Chen C, Liu Y, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2:ra75PubMedPubMedCentralGoogle Scholar
  30. 30.
    Lu A, Proto JD, Guo L, Tang Y, Lavasani M, Tilstra JS, Niedernhofer LJ, Wang B, Guttridge DC, Robbins PD, Huard J (2012) NF-kappaB negatively impacts the myogenic potential of muscle-derived stem cells. Mol Ther 20:661–668PubMedCrossRefGoogle Scholar
  31. 31.
    Tilstra JS, Robinson AR, Wang J, Gregg SQ, Clauson CL, Reay DP, Nasto LA, Croix CMS, Usas A, Vo N, Huard J, Clemens PR, Stolz DB, Guttridge DC, Watkins SC, Garinis GA, Wang Y, Niedernhofer LJ, Robbins PD (2012) NF-kappaB inhibition delays DNA damage-induced senescence and aging in mice. J Clin Invest 122:2601–2612PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R (2002) Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48PubMedCrossRefGoogle Scholar
  33. 33.
    Kim J, Hematti P (2009) Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol 37:1445–1453PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Yao B, Huang S, Gao D, Xie J, Liu N, Fu X (2016) Age-associated changes in regenerative capabilities of mesenchymal stem cell: impact on chronic wounds repair. Int Wound J 13:1252–1259PubMedCrossRefGoogle Scholar
  35. 35.
    Duscher D, Rennert RC, Januszyk M, Anghel E, Maan ZN, Whittam AJ, Perez MG, Kosaraju R, Hu MS, Walmsley GG, Atashroo D, Khong S, Butte AJ, Gurtner GC (2014) Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Sci Rep 4:7144PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M (2001) Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2:165–171PubMedCrossRefGoogle Scholar
  37. 37.
    Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16:1120–1129PubMedCrossRefGoogle Scholar
  38. 38.
    Kiernan J, Hu S, Grynpas MD, Davies JE, Stanford WL (2016) Systemic mesenchymal stromal cell transplantation prevents functional bone loss in a mouse model of age-related osteoporosis. Stem Cells Transl Med 5:683–693PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Anderson AS, Loeser RF (2010) Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol 24:15PubMedCentralCrossRefGoogle Scholar
  40. 40.
    Barry F, Murphy M (2013) Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 9:584–594PubMedCrossRefGoogle Scholar
  41. 41.
    Fahy N, de Vries-van Melle ML, Lehmann J, Wei W, Grotenhuis N, Farrell E, van der Kraan PM, Murphy JM, Bastiaansen-Jenniskens YM, van Osch GJVM (2014) Human osteoarthritic synovium impacts chondrogenic differentiation of mesenchymal stem cells via macrophage polarisation state. Osteoarthr Cartil 22:1167–1175PubMedCrossRefGoogle Scholar
  42. 42.
    Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46:704–713PubMedCrossRefGoogle Scholar
  43. 43.
    Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, Ra JC, Oh S, Yoon KS (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32:1254–1266PubMedCrossRefGoogle Scholar
  44. 44.
    Franceschi C, Campisi J (2014) Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S4–S9PubMedCrossRefGoogle Scholar
  45. 45.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedCrossRefGoogle Scholar
  46. 46.
    Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32:1005–1011PubMedCrossRefGoogle Scholar
  47. 47.
    Patel AN, Henry TD, Quyyumi AA, Schaer GL, Anderson RD, Toma C, East C, Remmers AE, Goodrich J, Desai AS, Recker D, DeMaria A, ixCELL-DCM Investigators (2016) Ixmyelocel-T for patients with ischaemic heart failure: a prospective randomised double-blind trial. Lancet 387:2412–2421PubMedCrossRefGoogle Scholar
  48. 48.
    Morigi M, Imberti B, Zoja C, Corna D, Tomasoni S, Abbate M, Rottoli D, Angioletti S, Benigni A, Perico N, Alison M, Remuzzi G (2004) Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure. J Am Soc Nephrol 15:1794–1804PubMedCrossRefGoogle Scholar
  49. 49.
    Tan J, Wu W, Xu X, Liao L, Zheng F, Messinger S, Sun X, Chen J, Yang S, Cai J, Gao X, Pileggi A, Ricordi C (2012) Induction therapy with autologous mesenchymal stem cells in living-related kidney transplants: a randomized controlled trial. JAMA 307:1169–1177PubMedCrossRefGoogle Scholar
  50. 50.
    Bang OY, Lee JS, Lee PH, Lee G (2005) Autologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol 57:874–882PubMedCrossRefGoogle Scholar
  51. 51.
    Ditschkowski M, Einsele H, Schwerdtfeger R, Bunjes D, Trenschel R, Beelen DW, Elmaagacli AH (2003) Improvement of inflammatory bowel disease after allogeneic stem-cell transplantation. Transplantation 75:1745–1747PubMedCrossRefGoogle Scholar
  52. 52.
    Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae JS (2010) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28:329–343PubMedGoogle Scholar
  53. 53.
    Li Y, Chen J, Wang L, Zhang L, Lu M, Chopp M (2001) Intracerebral transplantation of bone marrow stromal cells in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Neurosci Lett 316:67–70PubMedCrossRefGoogle Scholar
  54. 54.
    Shibata T, Naruse K, Kamiya H, Kozakae M, Kondo M, Yasuda Y, Nakamura N, Ota K, Tosaki T, Matsuki T, Nakashima E, Hamada Y, Oiso Y, Nakamura J (2008) Transplantation of bone marrow-derived mesenchymal stem cells improves diabetic polyneuropathy in rats. Diabetes 57:3099–3107PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sun B, Roh KH, Park JR, Lee SR, Park SB, Jung JW, Kang SK, Lee YS, Kang KS (2009) Therapeutic potential of mesenchymal stromal cells in a mouse breast cancer metastasis model. Cytotherapy 11:289–298, 1 p following 98PubMedCrossRefGoogle Scholar
  56. 56.
    Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5:e201PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci U S A 108:20012–20017PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dawar S, Shahrin NH, Sladojevic N, D’Andrea RJ, Dorstyn L, Hiwase DK, Kumar S (2016) Impaired haematopoietic stem cell differentiation and enhanced skewing towards myeloid progenitors in aged caspase-2-deficient mice. Cell Death Dis 7:e2509PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kamminga LM, van Os R, Ausema A, Noach EJ, Weersing E, Dontje B, Vellenga E, de Haan G (2005) Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells 23:82–92PubMedCrossRefGoogle Scholar
  60. 60.
    Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Roobrouck VD, Ulloa-Montoya F, Verfaillie CM (2008) Self-renewal and differentiation capacity of young and aged stem cells. Exp Cell Res 314:1937–1944PubMedCrossRefGoogle Scholar
  62. 62.
    Qian F, Wang X, Zhang L, Chen S, Piecychna M, Allore H, Bockenstedt L, Malawista S, Bucala R, Shaw AC, Fikrig E, Montgomery RR (2012) Age-associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell 11:104–110PubMedCrossRefGoogle Scholar
  63. 63.
    Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR (2011) Dysregulation of human toll-like receptor function in aging. Ageing Res Rev 10:346–353PubMedCrossRefGoogle Scholar
  64. 64.
    Mariani E, Meneghetti A, Formentini I, Neri S, Cattini L, Ravaglia G, Forti P, Facchini A (2003) Telomere length and telomerase activity: effect of ageing on human NK cells. Mech Ageing Dev 124:403–408PubMedCrossRefGoogle Scholar
  65. 65.
    Sagiv A, Biran A, Yon M, Simon J, Lowe SW, Krizhanovsky V (2013) Granule exocytosis mediates immune surveillance of senescent cells. Oncogene 32:1971–1977PubMedCrossRefGoogle Scholar
  66. 66.
    Solana R, Mariani E (2000) NK and NK/T cells in human senescence. Vaccine 18:1613–1620PubMedCrossRefGoogle Scholar
  67. 67.
    Waggoner SN, Cornberg M, Selin LK, Welsh RM (2011) Natural killer cells act as rheostats modulating antiviral T cells. Nature 481:394–398PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hearps AC, Martin GE, Angelovich TA, Cheng WJ, Maisa A, Landay AL, Jaworowski A, Crowe SM (2012) Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell 11:867–875PubMedCrossRefGoogle Scholar
  69. 69.
    Montgomery RR, Shaw AC (2015) Paradoxical changes in innate immunity in aging: recent progress and new directions. J Leukoc Biol 98:937–943PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Wenisch C, Patruta S, Daxbock F, Krause R, Horl W (2000) Effect of age on human neutrophil function. J Leukoc Biol 67:40–45PubMedCrossRefGoogle Scholar
  71. 71.
    Allsopp RC, Cheshier S, Weissman IL (2001) Telomere shortening accompanies increased cell cycle activity during serial transplantation of hematopoietic stem cells. J Exp Med 193:917–924PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Sekulovic S, Gylfadottir V, Vulto I, Gasparetto M, Even Y, Brookes C, Smith C, Eaves CJ, Lansdorp PM, Rossi FM, Humphries RK (2011) Prolonged self-renewal activity unmasks telomerase control of telomere homeostasis and function of mouse hematopoietic stem cells. Blood 118:1766–1773PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A, Hildner K, Guachalla LM, Gompf A, Hartmann D, Schambach A, Wuestefeld T, Dauch D, Schrezenmeier H, Hofmann WK, Nakauchi H, Ju Z, Kestler HA, Zender L, Rudolph KL (2012) A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 148:1001–1014PubMedCrossRefGoogle Scholar
  74. 74.
    Ludin A, Gur-Cohen S, Golan K, Kaufmann KB, Itkin T, Medaglia C, Lu XJ, Ledergor G, Kollet O, Lapidot T (2014) Reactive oxygen species regulate hematopoietic stem cell self-renewal, migration and development, as well as their bone marrow microenvironment. Antioxid Redox Signal 21:1605–1619PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shao L, Li H, Pazhanisamy SK, Meng A, Wang Y, Zhou D (2011) Reactive oxygen species and hematopoietic stem cell senescence. Int J Hematol 94:24–32PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Mayack SR, Shadrach JL, Kim FS, Wagers AJ (2010) Systemic signals regulate ageing and rejuvenation of blood stem cell niches. Nature 463:495–500PubMedCrossRefGoogle Scholar
  77. 77.
    Godder K, Eapen M, Laver JH, Zhang MJ, Camitta BM, Wayne AS, Gale RP, Doyle JJ, Yu LC, Chen AR, Garvin JH Jr, Sandler ES, Yeager AM, Edwards JR, Horowitz MM (2004) Autologous hematopoietic stem-cell transplantation for children with acute myeloid leukemia in first or second complete remission: a prognostic factor analysis. J Clin Oncol 22:3798–3804PubMedCrossRefGoogle Scholar
  78. 78.
    Holmberg LA, Stewart FM (2003) Hematopoietic stem cell transplantation for non-Hodgkin’s lymphoma. Oncology 17:627–632, 35, 40; discussion 40-2PubMedGoogle Scholar
  79. 79.
    Wayne AS, Baird K, Egeler RM (2010) Hematopoietic stem cell transplantation for leukemia. Pediatr Clin N Am 57:1–25CrossRefGoogle Scholar
  80. 80.
    Bhatia M, Sheth S (2015) Hematopoietic stem cell transplantation in sickle cell disease: patient selection and special considerations. J Blood Med 6:229–238PubMedPubMedCentralGoogle Scholar
  81. 81.
    Gratwohl A, Baldomero H, Aljurf M, Pasquini MC, Bouzas LF, Yoshimi A, Szer J, Lipton J, Schwendener A, Gratwohl M, Frauendorfer K, Niederwieser D, Horowitz M, Kodera Y, Worldwide Network of Blood and Marrow Transplantation (2010) Hematopoietic stem cell transplantation: a global perspective. JAMA 303:1617–1624PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Myers KC, Davies SM (2009) Hematopoietic stem cell transplantation for bone marrow failure syndromes in children. Biol Blood Marrow Transplant 15:279–292PubMedCrossRefGoogle Scholar
  83. 83.
    Basak GW, Wiktor-Jedrzejczak W, Labopin M, Schoemans H, Ljungman P, Kobbe G, Beguin Y, Lang P, Koenecke C, Sykora KW, Te Boome L, van Biezen A, van der Werf S, Mohty M, de Witte T, Marsh J, Dreger P, Kroger N, Duarte R, Ruutu T (2015) Allogeneic hematopoietic stem cell transplantation in solid organ transplant recipients: a retrospective, multicenter study of the EBMT. Am J Transplant 15:705–714PubMedCrossRefGoogle Scholar
  84. 84.
    Gratwohl A, Baldomero H, Demirer T, Rosti G, Dini G, Ladenstein R, Urbano-Ispizua A, Accreditation Committee, European Group for Blood and Marrow Transplantation, Working Party on Pediatric Diseases, Working Party on Solid Tumors (2004) Hematopoetic stem cell transplantation for solid tumors in Europe. Ann Oncol 15:653–660PubMedCrossRefGoogle Scholar
  85. 85.
    Kuritzkes DR (2016) Hematopoietic stem cell transplantation for HIV cure. J Clin Invest 126:432–437PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Murphy WJ, Artz AS, Champlin RE, Koreth J, Longo DL, van den Brink MR (2009) Blood stem cell transplantation in older patients. Biol Blood Marrow Transplant 15:1638–1639PubMedCrossRefGoogle Scholar
  87. 87.
    Tyndall A (2011) Successes and failures of stem cell transplantation in autoimmune diseases. Hematology Am Soc Hematol Educ Program 2011:280–284PubMedGoogle Scholar
  88. 88.
    Lewin SR, Heller G, Zhang L, Rodrigues E, Skulsky E, van den Brink MR, Small TN, Kernan NA, O’Reilly RJ, Ho DD, Young JW (2002) Direct evidence for new T-cell generation by patients after either T-cell-depleted or unmodified allogeneic hematopoietic stem cell transplantations. Blood 100:2235–2242PubMedGoogle Scholar
  89. 89.
    van Heijst JW, Ceberio I, Lipuma LB, Samilo DW, Wasilewski GD, Gonzales AM, Nieves JL, van den Brink MR, Perales MA, Pamer EG (2013) Quantitative assessment of T cell repertoire recovery after hematopoietic stem cell transplantation. Nat Med 19:372–377PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Velardi E, Dudakov JA, van den Brink MR (2013) Clinical strategies to enhance thymic recovery after allogeneic hematopoietic stem cell transplantation. Immunol Lett 155:31–35PubMedCrossRefGoogle Scholar
  91. 91.
    Velardi E, Dudakov JA, van den Brink MR (2015) Sex steroid ablation: an immunoregenerative strategy for immunocompromised patients. Bone Marrow Transplant 50(Suppl 2):S77–S81PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Marie-Cardine A, Divay F, Dutot I, Green A, Perdrix A, Boyer O, Contentin N, Tilly H, Tron F, Vannier JP, Jacquot S (2008) Transitional B cells in humans: characterization and insight from B lymphocyte reconstitution after hematopoietic stem cell transplantation. Clin Immunol 127:14–25PubMedCrossRefGoogle Scholar
  93. 93.
    Ottinger HD, Beelen DW, Scheulen B, Schaefer UW, Grosse-Wilde H (1996) Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood 88:2775–2779PubMedGoogle Scholar
  94. 94.
    Foley B, Felices M, Cichocki F, Cooley S, Verneris MR, Miller JS (2014) The biology of NK cells and their receptors affects clinical outcomes after hematopoietic cell transplantation (HCT). Immunol Rev 258:45–63PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Gill S, Olson JA, Negrin RS (2009) Natural killer cells in allogeneic transplantation: effect on engraftment, graft- versus-tumor, and graft-versus-host responses. Biol Blood Marrow Transplant 15:765–776PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Hindle JV (2010) Ageing, neurodegeneration and Parkinson’s disease. Age Ageing 39:156–161PubMedCrossRefGoogle Scholar
  97. 97.
    Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rietze RL, Valcanis H, Brooker GF, Thomas T, Voss AK, Bartlett PF (2001) Purification of a pluripotent neural stem cell from the adult mouse brain. Nature 412:736–739PubMedCrossRefGoogle Scholar
  99. 99.
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, Tsukamoto AS, Gage FH, Weissman IL (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A 97:14720–14725PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Mazzini L, Gelati M, Profico DC, Sgaravizzi G, Projetti Pensi M, Muzi G, Ricciolini C, Rota Nodari L, Carletti S, Giorgi C, Spera C, Domenico F, Bersano E, Petruzzelli F, Cisari C, Maglione A, Sarnelli MF, Stecco A, Querin G, Masiero S, Cantello R, Ferrari D, Zalfa C, Binda E, Visioli A, Trombetta D, Novelli A, Torres B, Bernardini L, Carriero A, Prandi P, Servo S, Cerino A, Cima V, Gaiani A, Nasuelli N, Massara M, Glass J, Soraru G, Boulis NM, Vescovi AL (2015) Human neural stem cell transplantation in ALS: initial results from a phase I trial. J Transl Med 13:17PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Cheng Y, Zhang J, Deng L, Johnson NR, Yu X, Zhang N, Lou T, Zhang Y, Wei X, Chen Z, He S, Li X, Xiao J (2015) Intravenously delivered neural stem cells migrate into ischemic brain, differentiate and improve functional recovery after transient ischemic stroke in adult rats. Int J Clin Exp Pathol 8:2928–2936PubMedPubMedCentralGoogle Scholar
  102. 102.
    Chou CH, Fan HC, Hueng DY (2015) Potential of neural stem cell-based therapy for Parkinson’s disease. Parkinsons Dis 2015:571475PubMedPubMedCentralGoogle Scholar
  103. 103.
    Wu CC, Lien CC, Hou WH, Chiang PM, Tsai KJ (2016) Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Sci Rep 6:27358PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Wu S, Sasaki A, Yoshimoto R, Kawahara Y, Manabe T, Kataoka K, Asashima M, Yuge L (2008) Neural stem cells improve learning and memory in rats with Alzheimer’s disease. Pathobiology 75:186–194PubMedCrossRefGoogle Scholar
  105. 105.
    Hemmer K, Zhang M, van Wullen T, Sakalem M, Tapia N, Baumuratov A, Kaltschmidt C, Kaltschmidt B, Scholer HR, Zhang W, Schwamborn JC (2014) Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain. Stem Cell Rep 3:423–431CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Molecular Medicine and the Center on AgingThe Scripps Research InstituteJupiterUSA

Personalised recommendations