The Emerging Roles of microRNAs in Stem Cell Aging

  • Catharine Dietrich
  • Manish Singh
  • Nishant Kumar
  • Shree Ram SinghEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1056)


Aging is the continuous loss of tissue and organ function over time. MicroRNAs (miRNAs) are thought to play a vital role in this process. miRNAs are endogenous small noncoding RNAs that control the expression of target mRNA. They are involved in many biological processes such as developmental timing, differentiation, cell death, stem cell proliferation and differentiation, immune response, aging and cancer. Accumulating studies in recent years suggest that miRNAs play crucial roles in stem cell division and differentiation. In the present chapter, we present a brief overview of these studies and discuss their contributions toward our understanding of the importance of miRNAs in normal and aged stem cell function in various model systems.


microRNAs Stem cells Cellular senescence Aging 


  1. 1.
    Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125:7–17PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Victoria B, Nunez Lopez YO, Masternak MM (2017) MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 455:131PubMedCrossRefGoogle Scholar
  4. 4.
    Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116–125PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Thomson T, Lin H (2009) The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25:355–376PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858PubMedCrossRefGoogle Scholar
  9. 9.
    Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89PubMedCrossRefGoogle Scholar
  11. 11.
    Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906PubMedCrossRefGoogle Scholar
  12. 12.
    Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862PubMedCrossRefGoogle Scholar
  13. 13.
    Chan B, Manley J, Lee J, Singh SR (2015) The emerging roles of microRNAs in cancer metabolism. Cancer Lett 356:301–308PubMedCrossRefGoogle Scholar
  14. 14.
    Davis C, Dukes A, Drewry M, Helwa I, Johnson M, Isales CM, Hill WD, Liu Y, Shi X, Fulzele S, Hamrick MW (2017) MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence. Tissue Eng Part A 23(21-22):1231–1240. CrossRefPubMedGoogle Scholar
  15. 15.
    Fei J, Tamski H, Cook C, Santanam N (2013) MicroRNA regulation of adipose derived stem cells in aging rats. PLoS One 8(3):e59238PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39:608–616PubMedCrossRefGoogle Scholar
  17. 17.
    Hammond S, Sharpless N (2008) HMGA2, microRNAs, and stem cell aging. Cell 135(6):1013–1016PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hodzic M, Naaldijk Y, Stolzing A (2013) Regulating aging in adult stem cells with microRNA. Z Gerontol Geriatr 46:629–634PubMedCrossRefGoogle Scholar
  19. 19.
    Kim S, Rhee JK, Yoo HJ, Lee HJ, Lee EJ, Lee JW, Yu JH, Son BH, Gong G, Kim SB, Singh SR, Ahn SH, Chang S (2015) Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer. Cancer Lett 357(2):488–497PubMedCrossRefGoogle Scholar
  20. 20.
    Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135:227–239PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Seol HS, Akiyama Y, Shimada S, Lee HJ, Kim TI, Chun SM, Singh SR, Jang SJ (2014) Epigenetic silencing of microRNA-373 to epithelial-mesenchymal transition in non-small cell lung cancer through IRAK2 and LAMP1 axes. Cancer Lett 353(2):232–241PubMedCrossRefGoogle Scholar
  22. 22.
    Singh SR, Rameshwar P (2014) MicroRNA in development and in the progression of cancer. Springer, New YorkCrossRefGoogle Scholar
  23. 23.
    Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124:1775–1783PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Yalcin S, Carty M, Shin JY, Miller RA, Leslie C, Park CY (2014) Microrna mediated regulation of hematopoietic stem cell aging. Blood 124:602Google Scholar
  25. 25.
    Yu KR, Lee S, Jung JW, Hong IS, Kim HS, Seo Y, Shin TH, Kang KS (2013) MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24. J Cell Sci 126(Pt 23):5422–5431PubMedCrossRefGoogle Scholar
  26. 26.
    Lin H (2008) Cell biology of stem cells: an enigma of asymmetry and self-renewal. J Cell Biol 180(2):257–260PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Singh SR (2012) Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem 19(35):5965–5974PubMedCrossRefGoogle Scholar
  28. 28.
    Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3(7):e236PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Li N, Long B, Han W, Yuan S, Wang K (2017) microRNAs: important regulators of stem cells. Stem Cell Res Ther 8(1):110PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Li Q, Gregory RI (2008) MicroRNA regulation of stem cell fate. Cell Stem Cell 2(3):195–196PubMedCrossRefGoogle Scholar
  31. 31.
    Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. Adv Exp Med Biol 786:329–351PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Shcherbata HR, Hatfield S, Ward EJ, Reynolds S, Fischer KA, Ruohola-Baker H (2006) The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle 5(2):172–175PubMedCrossRefGoogle Scholar
  33. 33.
    Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5(2):351–358PubMedCrossRefGoogle Scholar
  34. 34.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270(2):488–498PubMedCrossRefGoogle Scholar
  37. 37.
    Yu Z, Li Y, Fan H, Liu Z, Pestell RG (2012) miRNAs regulate stem cell self-renewal and differentiation. Front Genet 3:191PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Greene SB, Gunaratne PH, Hammond SM, Rosen JM (2010) A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci 123:606–618PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zhang L, Stokes N, Polak L, Fuchs E (2011) Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8(3):294–308PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6(5):433–444PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kim H, Lee G, Ganat Y, Papapetrou EP, Lipchina I, Socci ND, Sadelain M, Studer L (2011) miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 8(6):695–706PubMedCrossRefGoogle Scholar
  46. 46.
    Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging 3:108–124PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190(5):867–879PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86PubMedCrossRefGoogle Scholar
  49. 49.
    Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159PubMedCrossRefGoogle Scholar
  50. 50.
    Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, Purton LE, Fleming HH, Cobb B, Merkenschlager M, Golub TR, Scadden DT (2010) MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A 107(32):14229–14234PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Chen CH, Luhur A, Sokol N (2015) Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine. Development 142(20):3478–3487PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Glass C, Singla DK (2011) MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol Heart Circ Physiol 301(5):H2038–H2049PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Huang ZP, Neppl RL, Wang DZ (2010) MicroRNAs in cardiac remodeling and disease. J Cardiovasc Transl Res 3(3):212–218PubMedCrossRefGoogle Scholar
  54. 54.
    Liang J, Huang W, Cai W, Wang L, Guo L, Paul C, Yu XY, Wang Y (2017) Inhibition of microRNA-495 enhances therapeutic angiogenesis of human induced pluripotent stem cells. Stem Cells 35(2):337–350PubMedCrossRefGoogle Scholar
  55. 55.
    Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, Goumans MJ (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30(4):859–868PubMedCrossRefGoogle Scholar
  56. 56.
    Yoo JK, Kim J, Choi SJ, Noh HM, Kwon YD, Yoo H, Yi HS, Chung HM, Kim JK (2012) Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells. Stem Cells Dev 21(11):2049–2057PubMedCrossRefGoogle Scholar
  57. 57.
    Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 108(15):6139–6144PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ham O, Song BW, Lee SY, Choi E, Cha MJ, Lee CY, Park JH, Kim IK, Chang W, Lim S, Lee CH, Kim S, Jang Y, Hwang KC (2012) The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials 33(18):4500–4507PubMedCrossRefGoogle Scholar
  59. 59.
    Lin X, Wu L, Zhang Z, Yang R, Guan Q, Hou X, Wu Q (2014) MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Miner Res 29(7):1575–1585PubMedCrossRefGoogle Scholar
  60. 60.
    Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295(5554):502–505PubMedCrossRefGoogle Scholar
  61. 61.
    Joshi PM, Riddle MR, Djabrayan NJ, Rothman JH (2010) Caenorhabditis elegans as a model for stem cell biology. Dev Dyn 239(5):1539–1554PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Boulias K, Horvitz HR (2012) The C. elegans microRNA mir-71 acts in neurons to promote germline mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15:439–450PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Harandi OF, Ambros VR (2015) Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A 112(3):E287–E296PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145PubMedCrossRefGoogle Scholar
  65. 65.
    Lucanic M, Graham J, Scott G, Bhaumik D, Benz CC, Hubbard A, Lithgow GJ, Melov S (2013) Age-related micro-RNA abundance in individual C. elegans. Aging (Albany NY) 5(6):394–411CrossRefGoogle Scholar
  66. 66.
    Nimmo RA, Slack FJ (2009 Aug) An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118(4):405–418PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Shen Y, Wollam J, Magner D, Karalay O, Antebi A (2012) A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338:1472–1476PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wang D, Hou L, Nakamura S, Su M, Li F, Chen W, Yan Y, Green CD, Chen D, Zhang H, Antebi A, Han JJ (2017) LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis. Aging Cell 16(1):113–124PubMedCrossRefGoogle Scholar
  69. 69.
    Toledano H, D’Alterio C, Czech B, Levine E, Jones DL (2012) The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 485:605–610PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Foronda D, Weng R, Verma P, Chen YW, Cohen SM (2014) Coordination of insulin and notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut. Genes Dev 28(21):2421–2431PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Hackl M, Brunner S (2010) mir-17, mir-19b, mir-20a, and mir-106 are down-regulated in human aging. Aging Cell 9(2):291–296PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lee S, Yu KR, Ryu YS, Oh YS, Hong IS, Kim HS, Lee JY, Kim S, Seo KW, Kang KS (2014) miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18. Age 36(6):9724PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Tomé M, Sepúlveda JC, Delgado M, Andrades JA, Campisi J, González MA, Bernad A (2014) miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells 32(8):2229–2244PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Shang J, Yao Y, Fan X, Shangguan L, Li J, Liu H, Zhou Y (2016) miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochim Biophys Acta 1863(4):520–532PubMedCrossRefGoogle Scholar
  76. 76.
    Peffers MJ, Collins J, Fang Y, Goljanek-Whysall K, Rushton M, Loughlin J, Proctor C, Clegg PD (2016) Age-related changes in mesenchymal stem cells identified using a multi-omics approach. Eur Cell Mater 31:136–159PubMedCrossRefGoogle Scholar
  77. 77.
    Hisamatsu D, Ohno-Oishi M, Nakamura S, Mabuchi Y, Naka-Kaneda H (2016) Growth differentiation factor 6 derived from mesenchymal stem/stromal cells reduces age-related functional deterioration in multiple tissues. Aging (Albany NY) 8(6):1259–1275CrossRefGoogle Scholar
  78. 78.
    Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M (2016) Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells 34(1):148–159PubMedCrossRefGoogle Scholar
  79. 79.
    Yu JM, Wu X et al (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Lee S, Jung JW, Park SB, Roh K, Lee SY, Kim JH, Kang SK, Kang KS (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 68(2):325–336PubMedCrossRefGoogle Scholar
  81. 81.
    So AY, Jung JW, Lee S, Kim HS, Kang KS (2011) DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6(5):e19503PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Zhao JL, Rao DS, O'Connell RM, Garcia-Flores Y, Baltimore D (2013) MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. elife 2:e00537PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mehta A, Zhao JL, Sinha N, Marinov GK, Mann M, Kowalczyk MS, Galimidi RP, Du X, Erikci E, Regev A, Chowdhury K, Baltimore D (2015) The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression. Immunity 42(6):1021–1032PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Pandey AC, Semon JA, Kaushal D, O’Sullivan RP, Glowacki J, Gimble JM, Bunnell BA (2011) MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Res Ther 2(6):49PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8(2):215–225PubMedCrossRefGoogle Scholar
  86. 86.
    López JA, Granados-López AJ (2017) Future directions of extracellular vesicle-associated miRNAs in metastasis. Ann Transl Med 5(5):115PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43(10):595–603PubMedCrossRefGoogle Scholar
  88. 88.
    Soriano-Arroquia A, McCormick R, Molloy AP, McArdle A, Goljanek-Whysall K (2016) Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration. Aging Cell 15(2):361–369PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Redshaw Z, Sweetman D, Loughna PT (2014) The effects of age upon the expression of three miRNAs in muscle stem cells isolated from two different porcine skeletal muscles. Differentiation 88(4-5):117–123PubMedCrossRefGoogle Scholar
  90. 90.
    Chen L, Wang GD, Liu JP, Wang HS, Liu XM, Wang Q, Cai XH (2015a) miR-135a modulates tendon stem/progenitor cell senescence via suppressing ROCK1. Bone 71:210–216PubMedCrossRefGoogle Scholar
  91. 91.
    Chen L, Liu J, Tao X, Wang G, Wang Q, Liu X (2015b) The role of Pin1 protein in aging of human tendon stem/progenitor cells. Biochem Biophys Res Commun 464(2):487–492PubMedCrossRefGoogle Scholar
  92. 92.
    Cai B, Ma W, Bi C, Yang F, Zhang L, Han Z, Huang Q, Ding F, Li Y, Yan G, Pan Z, Yang B, Lu Y (2016) Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit(+) cardiac progenitor cells by promoting miR-675. J Pineal Res 61(1):82–95PubMedCrossRefGoogle Scholar
  93. 93.
    Gu S, Ran S, Liu B, Liang J (2016) miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression. FEBS Lett 590(8):1123–1131PubMedCrossRefGoogle Scholar
  94. 94.
    Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310(5756):1954–1957PubMedCrossRefGoogle Scholar
  95. 95.
    Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C (2013) Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 340(6130):372–376PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1(4):470–478PubMedCrossRefGoogle Scholar
  97. 97.
    Wallenfang MR, Nayak R, DiNardo S (2006) Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 5(4):297–304PubMedCrossRefGoogle Scholar
  98. 98.
    Eun SH, Stoiber PM, Wright HJ, McMurdie KE, Choi CH, Gan Q, Lim C, Chen X (2013) MicroRNAs downregulate bag of marbles to ensure proper terminal differentiation in the Drosophila male germline. Development 140(1):23–30PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978PubMedCrossRefGoogle Scholar
  100. 100.
    Jin Z, Xie T (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol 17(6):539–544PubMedCrossRefGoogle Scholar
  101. 101.
    Li Y, Maines JZ, Tastan OY, McKearin DM, Buszczak M (2012) Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling. Development 139(9):1547–1556PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Neumüller RA, Betschinger J, Fischer A, Bushati N, Poernbacher I, Mechtler K, Cohen SM, Knoblich JA (2008) Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature 454(7201):241–245PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Rager R, Chan B, Forney L, Singh SR (2014) Role of MicroRNAs in stem cell regulation and tumorigenesis in Drosophila. In: Singh SR, Rameshwar P (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, pp 69–80CrossRefGoogle Scholar
  104. 104.
    Shcherbata HR, Ward EJ, Fischer KA, Yu JY, Reynolds SH, Chen CH, Xu P, Hay BA, Ruohola-Baker H (2007) Stage-specific differences in the requirements for germline stem cell maintenance in the Drosophila ovary. Cell Stem Cell 1(6):698–709PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5(4):e1000444PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ, Long D, Ding Y, Ruohola-Baker H (2009) Dicer-1-dependent Dacapo suppression acts downstream of insulin receptor in regulating cell division of Drosophila germline stem cells. Development 136(9):1497–1507PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Biteau B, Karpac J, Supoyo S, Degennaro M, Lehmann R, Jasper H (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 6(10):e1001159PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16:445–453PubMedCrossRefGoogle Scholar
  109. 109.
    Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V (2002) Regenerative potential of human skeletal muscle during aging. Aging Cell 1(2):132–139PubMedCrossRefGoogle Scholar
  110. 110.
    Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292(1):E151–E157PubMedCrossRefGoogle Scholar
  111. 111.
    Lee KP, Shin YJ, Panda AC, Abdelmohsen K, Kim JY, Lee SM, Bahn YJ, Choi JY, Kwon ES, Baek SJ, Kim SY, Gorospe M, Kwon KS (2015) miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 29(15):1605–1617PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Kondo H, Kim HW, Wang L, Okada M, Paul C, Millard RW, Wang Y (2016) Blockade of senescence-associated microRNA-195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells. Aging Cell 15(1):56–66PubMedCrossRefGoogle Scholar
  113. 113.
    Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A, Horrevoets AJ, Didier N, Girmatsion Z, Biliczki P, Ehrlich JR, Katus HA, Müller OJ, Potente M, Zeiher AM, Hermeking H, Dimmeler S (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439):107–110PubMedCrossRefGoogle Scholar
  114. 114.
    Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921PubMedCrossRefGoogle Scholar
  116. 116.
    Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, Yang F, Wei J, Wang L, Dykxhoorn DM, Hare JM, Goldschmidt-Clermont PJ, Dong C (2013) MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res 112(1):152–164PubMedCrossRefGoogle Scholar
  117. 117.
    Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, Kjaer M, Magnusson SP (2009) Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol 107(3):880–886PubMedCrossRefGoogle Scholar
  118. 118.
    Tan Q, Lui PP, Rui YF (2012) Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering. Stem Cells Dev 21:790–800PubMedCrossRefGoogle Scholar
  119. 119.
    Alraies A, Alaidaroos NY, Waddington RJ, Moseley R, Sloan AJ (2017) Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 18(1):12PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Hara ES, Ono M, Eguchi T, Kubota S, Pham HT, Sonoyama W, Tajima S, Takigawa M, Calderwood SK, Kuboki T (2013) miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells. PLoS One 8(12):e83545PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Vasanthan P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Musa S, Abu Kasim NH (2015) Differential expression of basal microRNAs’ patterns in human dental pulp stem cells. J Cell Mol Med 19(3):566–580PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Catharine Dietrich
    • 1
  • Manish Singh
    • 2
  • Nishant Kumar
    • 3
  • Shree Ram Singh
    • 1
    Email author
  1. 1.Stem Cell Regulation and Animal Aging Section, Basic Research LaboratoryNational Cancer InstituteFrederickUSA
  2. 2.Mouse Cancer Genetics ProgramNational Cancer InstituteFrederickUSA
  3. 3.Hospitalist Division, Department of MedicineInova Fairfax Medical CampusFalls ChurchUSA

Personalised recommendations