Biobutanol Production Using Recombinant Microorganisms

  • Rakhee KhandeparkerEmail author
  • Rajesh K. Sani


This chapter reviews microbial biobutanol production and discusses the possibilities, remaining challenges, and prospects of biobutanol. The chapter also discusses the use of lignocellulosic biomass and development of mutant strains having higher butanol yield, selectivity, and tolerance to inhibition.


Biobutanol Recombinant microorganisms Enzymes Fermentation Extremophiles 



The author is grateful to the Director of the National Institute of Oceanography (CSIR), Goa (India), for facilities and encouragement and Dr. N. Ramaiah, Head, BOD for the support.


  1. Abe A, Inoue A, Usami R, Moriya K, Horikoshi K (1995) Properties of a newly isolated marine bacterium that can degrade polyaromatic hydrocarbons in the presence of organic solvents. J Mar Biotechnol 2:182–186Google Scholar
  2. Afschar AS, Biebl H, Schaller K, Schügerl K (1985) Production of acetone and butanol by Clostridium acetobutylicum in continuous culture with cell recycle. Appl Microbiol Biotechnol 22(6):394–398CrossRefGoogle Scholar
  3. Annous BA, Blaschek HP (1990) Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 56:2559–2561PubMedPubMedCentralGoogle Scholar
  4. Arifin Y, Tanudjaja E, Dimyati A, Pinontoan R (2014) A second generation biofuel from cellulosic agricultural by-product fermentation using Clostridium species for electricity generation. Energy Procedia 47:310–315CrossRefGoogle Scholar
  5. Atsumi S, Liao JC (2008) Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol 74:7802–7808CrossRefPubMedPubMedCentralGoogle Scholar
  6. Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 45:186–190Google Scholar
  7. Badr HR, Toledo R, Hamdy MK (2001) Continuous acetone ethanol butanol fermentation by immobilized cells of Clostridium acetobutylicum. Biomass Bioenergy 20:119–132CrossRefGoogle Scholar
  8. Bahl H, Andersch W, Gottschalk G (1982) Continuous production of acetone and butanol by Clostridium acetobutylicum in a two-stage phosphate limited chemostat. Appl Microbiol Biotechnol 15:201–205CrossRefGoogle Scholar
  9. Barnard D, Casanueva A, Tuffin M, Cowan D (2010) Extremophiles in biofuel synthesis. Environ Technol 31(8–9):871–888CrossRefPubMedGoogle Scholar
  10. Bayer EA, Lamed R, Himmel ME (2007) The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237–245CrossRefPubMedGoogle Scholar
  11. Beesch SC (1952) Acetone–butanol fermentation of sugars. Ind Eng Chem 44:1677–1682CrossRefGoogle Scholar
  12. Bennett GN, Scotcher MC (2007) Blocking sporulation by inhibiting SpoIIE. US Patent No 20070020740Google Scholar
  13. Bentley RW (2002) Global oil & gas depletion: an overview. Energ Policy 30(3):189–205CrossRefGoogle Scholar
  14. Bibra M, Wang J, Squillace P, Pinkelman R, Papendick S, Schneiderman S, Wood V, Amar V, Kumar S, Salem D, Sani R (2014) Biofuels and value-added products from extremophiles. In: Nawani N, Khetmalas M, Razdan PN, Pandey A (eds) Advances in biotechnology. IK International Publishing House, New Delhi, pp 17–51Google Scholar
  15. Blaschek H, Annous, B, Formanek J, Chen CK (2002) Method of producing butanol using a mutant strain of Clostridium beijerinckii. US6358717Google Scholar
  16. De Carvalho CC, Da Cruz AA, Pons NM, Pinheiro HM, Cabral JM, Da Fonseca MM, Ferreira BS, Fernandes P (2004) Mycobacterium sp. Rhodococcus erythropolis and Pseudomonas putida behavior in the presence of organic solvents. Microsc Res Tech 15:215–222CrossRefGoogle Scholar
  17. Demain A (2009) Biosolutions to the energy problem. J Ind Microbiol Biotechnol 36:319–332CrossRefPubMedGoogle Scholar
  18. Desai RP, Papoutsakis ET (1999) Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. Appl Environ Microbiol 65:936–994PubMedPubMedCentralGoogle Scholar
  19. Donaldson GK, Huang LL, Maggio-Hall LA, Nagarajan V, Nakamura CE, Suh W (2008) Fermentive production of four carbon alcohols. US20080182308Google Scholar
  20. Durre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648CrossRefGoogle Scholar
  21. Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534CrossRefPubMedGoogle Scholar
  22. Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA 101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603CrossRefGoogle Scholar
  23. Ezeji TC, Qureshi N, Blaschek HP (2004a) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas stripping. Appl Microbiol Biotechnol 63:653–658CrossRefPubMedGoogle Scholar
  24. Ezeji TC, Qureshi N, Blaschek HP (2004b) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4:305–314CrossRefPubMedGoogle Scholar
  25. Ezeji TC, Qureshi N, Blaschek HP (2005) Continuous butanol fermentation and feed starch retrogradation: butanol fermentation sustainability using Clostridium beijerinckii BA101. J Biotechnol 115:179–187CrossRefPubMedGoogle Scholar
  26. Ezeji TC, Qureshi N, Blaschek HP (2007) Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem 42:34–39CrossRefGoogle Scholar
  27. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD, Broadbelt LJ, Hatzimanikatis V, Palsson BØ (2007) A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol Syst Biol 3:121CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fontaine L, Meynial-Salles I, Girbal L, Yang X, Croux C, Soucaille P (2002) Molecular characterization and transcriptional analysis of adhE2, the gene encoding the NADH-dependent aldehyde/alcohol dehydrogenase responsible for butanol production in alcohologenic cultures of Clostridium acetobutylicum ATCC 824. J Bacteriol 184:821–830CrossRefPubMedPubMedCentralGoogle Scholar
  29. Fortman JL, Chhabra S, Mukhopadhyay A (2008) Biofuel alternatives to ethanol: pumping the microbial well. Trends Biotechnol 26:375–381CrossRefPubMedGoogle Scholar
  30. Gabriel CL, Crawford FM (1930) Development of the butyl-acetonic fermentation industry. Ind Eng Chem 22:1163–1165CrossRefGoogle Scholar
  31. Garcia V, Pakkila J, Ojamo H, Muurinen E, Keiski R (2011) Challenges in biobutanol production: how to improve the efficiency? Renew Sust Energ Rev 15:964–980CrossRefGoogle Scholar
  32. George HA, Johnson JL, Moore WE, Holdeman LV, Chen JS (1983) Acetone isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum. Appl Environ Microbiol 45(3):1160–1163PubMedPubMedCentralGoogle Scholar
  33. Girbal L, Soucaille P (1998) Regulation of solvent production in Clostridium acetobutylicum. Trends Biotechnol 16:11–16CrossRefGoogle Scholar
  34. Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing’s on the walls. New Phytol 178:473–485CrossRefPubMedGoogle Scholar
  35. Gottschal JC, Morris JG (1981) Non-production of acetone and butanol by Clostridium acetobutylicum during glucose- and ammonium limitation in continuous culture. Biotechnol Lett 3:525–530CrossRefGoogle Scholar
  36. Gottschalk G (1986) Bacterial metabolism. Springer, New York, pp 208–282Google Scholar
  37. Grobben NG, Eggink G, Petrus Cuperus F, Huizing HJ (1993) Production of acetone, butanol and ethanol (ABE) from potato wastes: fermentation with integrated membrane extraction. Appl Microbiol Biotechnol 39(4–5):494–498CrossRefGoogle Scholar
  38. Harris J, Mulder R, Kell DB, Walter RP, Morris JG (1986) Solvent production by Clostridium pasteurianum in media of high sugar content. Biotechnol Lett 8(12):889–892CrossRefGoogle Scholar
  39. Hermann M, Fayolle F, Marchal R (1988) Production of clostridium acetobutylicum mutants of high butanol and acetone productivity, the resultant mutants and the use of these mutants in the joint production of butanol and acetone. US4757010Google Scholar
  40. Hongo M (1960) Process for producing butanol by fermentation. US Patent No 2945786Google Scholar
  41. Hsu TA (1996) Handbook on bioethanol: production and utilization, Applied energy technology series. Taylor & Francis, Washington, DC, p 179Google Scholar
  42. Huang WC, Ramey DE, Yang ST (2004) Continuous production of butanol by Clostridium acetobutylicum immobilized in a fibrous bed bioreactor. Appl Biotechem Biotechnol 115:887–898CrossRefGoogle Scholar
  43. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316CrossRefPubMedGoogle Scholar
  44. Jain MK, Beacom D, Datta R (1993) Mutant strain of C. acetobutylicum and process for making butanol. US5192673Google Scholar
  45. Johnson JL, Chen JS (1995) Taxonomic relationships among strains of Clostridium acetobutylicum and other phenotypically similar organisms. FEMS Microbiol Rev 17:233–240CrossRefGoogle Scholar
  46. Johnson JL, Toth J, Santiwatanakul S, Chen JS (1997) Culture of “Clostridium acetobutylicum” from various collections comprise Clostridium acetobutylicum, Clostridium beijerinckii, and two other distinct types based on DNA–DNA reassociation. Int J Syst Bacteriol 47:420–424CrossRefPubMedGoogle Scholar
  47. Jones DT, Keis S (1995) Origins and relationships of industrial solvent-producing clostridial strains. FEMS Microbiol Rev 17(3):223–232CrossRefGoogle Scholar
  48. Keis S, Benett C, Ward VK, Jones DT (1995) Taxonomy and phylogeny of industrial solvent producing clostridia. Int J Syst Bacteriol 45:693–705CrossRefPubMedGoogle Scholar
  49. Kharkwal S, Karimi IA, Chang MW, Lee DY (2009) Strain improvement and process development for biobutanol production. Recent Pat Biotechnol 3:202–210CrossRefPubMedGoogle Scholar
  50. Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20CrossRefPubMedGoogle Scholar
  51. Kumar M, Gayen K (2011) Developments in biobutanol production: new insights. Appl Energy 88:1999–2012CrossRefGoogle Scholar
  52. Lee SY, Park JH, Jang SH, Nielson LK, Kim J, Jung KS (2008) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228CrossRefPubMedGoogle Scholar
  53. Liew ST, Arbakariya A, Rosfarizan M, Raha AR (2005) Production of solvent (acetone–butanol–ethanol) in continuous fermentation by Clostridium saccharobutylicum DSM 13864 using gelatinised Sago starch as a carbon source. Malaysian J Microbiol 2(2):42–45Google Scholar
  54. Lynd LR, Cushman JH, Nichols RJ, Wyman CE (1991) Fuel ethanol from cellulosic biomass. Science 251:1318–1323CrossRefPubMedGoogle Scholar
  55. Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793CrossRefPubMedGoogle Scholar
  56. Maddox IS, Qureshi N, Thomson KR (1995) Production of acetone–butanol–ethanol from concentrated substrates using Clostridium acetobutylicum in an integrated fermentation-product removal process. Process Biochem 30(3):209–215Google Scholar
  57. Madeliene RL, Maria LDWTA, Alexander BVM (2008) Butanol production in a eukaryotic cell. WO2008052991Google Scholar
  58. Mariano AP, Costa CBB, Angelis DF, Filho FM, Atala DIP, Maciel MRW (2009) Optimisation of a continuous flash fermentation for butanol production using the response surface methodology. Chem Eng Res Des 88:562–571CrossRefGoogle Scholar
  59. Mehaia MA, Cheryan M (1986) Lactic acid from acid whey permeate in a membrane recycle bioreactor. Enzym Microb Technol 8(5):289–292CrossRefGoogle Scholar
  60. Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:1986–1993CrossRefPubMedGoogle Scholar
  61. Napoli F, Olivieri G, Marzocchella A, Russo ME, Salatino P (2010) Production of butanol in a continuous packed bed reactor of Clostridium acetobutylicum. Chem Eng Trans 20:193–198Google Scholar
  62. Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KL (2009) Alternative Engineering butanol production platforms in heterologous bacteria. Metab Eng 11:262–273CrossRefPubMedGoogle Scholar
  63. Nookeaw I, Jewett MC, Meechai A, Thammarongtham C, Laoteng K, Cheevadhanarak S, Nielsen J, Bhumiratana S (2008) The genome-scale metabolic model iIN800 of Saccharomyces cerevisiae and its validation: a scaffold to query lipid metabolism. BMC Syst Biol 2:71CrossRefGoogle Scholar
  64. Papoutsakis ET, Lee SY, Park JH (2008) Method for preparing butanol through butyryl-coa as an intermediate using bacteria. WO2008072920Google Scholar
  65. Pierrot P, Fick M, Engasser JM (1986) Continuous acetone-butanol fermentation with high productivity by cell ultrafiltration and recycling. Biotechnol Lett 8(4):253–256CrossRefGoogle Scholar
  66. Puchalka J, Oberhardt MA, Godinho M, Bielecka A, Regenhardt D, Timmis KN, Papin JA, Martins dos Santos VA (2008) Genome-scale reconstruction and analysis of the Pseudomonas putida KT2440 metabolic network facilitates applications in biotechnology. PLoS Comput Biol 4:e1000210CrossRefPubMedPubMedCentralGoogle Scholar
  67. Qureshi N, Blaschek HP (2000) Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Appl Biochem Biotechnol 84–86:225–235CrossRefPubMedGoogle Scholar
  68. Qureshi N, Maddox IS (1995) Continuous production of acetone–butanol–ethanol using immobilised cells of Clostridium acetobutylicum and integration with product removal by liquid–liquid extraction. J Ferment Bioeng 80(2):185–189CrossRefGoogle Scholar
  69. Qureshi N, Meagher MM, Huang J, Hutkins RW (2001) Acetone butanol ethanol (ABE) recovery by pervaporation using silicalite–silicone composite membrane from fed-batch reactor of Clostridium acetobutylicum. J Membr Sci 187:93–102CrossRefGoogle Scholar
  70. Qureshi N, Lai LL, Blaschek HP (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process 82:164–173CrossRefGoogle Scholar
  71. Qureshi N, Hughes S, Maddox IS, Cotta MA (2005) Energy-efficient recovery of butanol from model solutions and fermentation broth by adsorption. Bioprocess Biosyst Eng 27:215–222CrossRefPubMedGoogle Scholar
  72. Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioprocess Biosyst Eng 30:419–427CrossRefPubMedGoogle Scholar
  73. Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008a) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I – batch fermentation. Biomass Bioenergy 32:168–175CrossRefGoogle Scholar
  74. Qureshi N, Saha BC, Cotta MA (2008b) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II –fed-batch fermentation. Biomass Bioenergy 32:176–183CrossRefGoogle Scholar
  75. Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010) Production of butanol (a biofuel) from agricultural residues: part I – use of barley straw hydrolysate. Biomass Bioenergy 34:559–565CrossRefGoogle Scholar
  76. Ragauskas AJ, Williams CK, Davison BH (2006) The path forward for biofuels and biomaterials. Science 311:484–489CrossRefPubMedGoogle Scholar
  77. Ramos-González M-I, Olson M, Gatenby AA, Mosqueda G, Manzanera M, Campos MJ, Vichez S, Ramos JL (2002) Cross-regulation between a novel two-component signal transduction system for catabolism of toluene in Pseudomonas mendocina and the TodST system from Pseudomonas putida. J Bacteriol 184(24):7062–7067CrossRefPubMedPubMedCentralGoogle Scholar
  78. Ruhl J, Schmid A, Blank LM (2009) Selected Pseudomonas putida strains able to grow in the presence of high butanol concentrations. Appl Environ Microbiol 75:4653–4656CrossRefPubMedPubMedCentralGoogle Scholar
  79. Samsuri M, Gozan M, Prasetya B, Nasikin M (2009) Enzymatic hydrolysis of lignocellulosic bagasse for bioethanol production. J Biotechnol Res Tropic Region 2:1–5Google Scholar
  80. Sardessai Y, Bhosle S (2002) Tolerance of bacteria to organic solvents. Res Microbiol 153:263–268CrossRefPubMedGoogle Scholar
  81. Segura A, Duque E, Rojas A, Godoy P, Delgado A, Hurtado A, Cronan J, Ramos JL (2004) Fatty acid biosynthesis is involved in solvent tolerance in Pseudomonas putida DOT-T1E. Environ Microbiol 6:416–423CrossRefPubMedGoogle Scholar
  82. Shen CR, Liao JC (2008) Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metab Eng 10:312–320CrossRefPubMedGoogle Scholar
  83. Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27PubMedPubMedCentralGoogle Scholar
  84. Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for n-butanol production. Microb Cell Factories 7:36CrossRefGoogle Scholar
  85. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11CrossRefPubMedGoogle Scholar
  86. Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fedbatch culture with pH-stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98(4):263–268CrossRefPubMedGoogle Scholar
  87. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965CrossRefPubMedPubMedCentralGoogle Scholar
  88. Uvini G, Peter M, Matthew WP, Urano J, Reid M, Renny F (2008) Butanol production by metabolically engineered yeast. WO2008080124Google Scholar
  89. Wang Z, Keshwani DR, Redding AP, Cheng JJ (2010) Sodium hydroxide pretreatment and enzymatic hydrolysis of coastal Bermuda grass. Bioresour Technol 101:3583–3585CrossRefPubMedGoogle Scholar
  90. Welch RW, Rudolph FB, Papoutsakis ET (1989) Purification and characterization of the NADH-dependent butanol dehydrogenase from Clostridium acetobutylicum (ATCC 824). Arch Biochem Biophys 273:309–318CrossRefPubMedGoogle Scholar
  91. Westhuizen AVD, Jones DT, Woods DR (1982) Autolytic activity and butanol tolerance of Clostridium acetobutylicum. Appl Environ Microbiol 44(6):1277–1281Google Scholar
  92. Whitfield MB, Chinn MS, Veal MW (2012) Processing of materials derived from sweet sorghum for biobased products. Ind Crop Prod 37:362–375CrossRefGoogle Scholar
  93. Yan Q, Wang A, Yu W, Wang L (2009) Development strategies of biofuel in China. In: International conference on energy and environment technology, IEEE computer society, vol 1, pp 588–593Google Scholar
  94. Zhang Z, Lohr L, Escalante C, Wetzstein M (2010) Food versus fuel: what do prices tell us? Energ Policy 38:445–451CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Oceanography, CSIRDona PaulaIndia
  2. 2.South Dakota School of Mines and TechnologyRapid CityUSA
  3. 3.Department of Chemical and Biological Engineering & Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA
  4. 4.Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations