Rewiring Extremophilic Electrocatalytic Processes for Production of Biofuels and Value-Added Compounds from Lignocellulosic Biomass

  • Navanietha Krishnaraj RathinamEmail author
  • Rajesh K. SaniEmail author
  • David Salem


This chapter will introduce the basic concepts of bioelectrocatalysis and the advantages of extremophiles for bioelectrochemical systems. The chapter will discuss electrogenic activity and electron transfer characteristics of extremophiles and their applications in microbial fuel cells, microbial electrolytic cells, microbial desalination cells, and microbial electrosynthesis. The use of extremophilic bioprocesses for production of bioenergy and value-added products from lignocellulosic biomass will also be discussed.



Financial support provided by the National Science Foundation in the form of BuG ReMeDEE initiative (Award # 1736255) is gratefully acknowledged. The authors gratefully acknowledge the financial support provided by NASA EPSCoR (Award # 1736255). The authors also gratefully acknowledge Department of Chemical and Biological Engineering at the South Dakota School of Mines and Technology for the support. Funding from the Governor’s Office of Economic Development, South Dakota (number) is greatly appreciated.


  1. Abramov SM, Sadraddinova ER, Shestakov AI, Voronin OG, Karyakin AA, Zorin NA, Netrusov AI (2013) Turning cellulose waste into electricity: hydrogen conversion by a hydrogenase electrode. Scholar
  2. Bella RSD, Hirankumar G, Krishnaraj RN, Prem Anand D (2016) Novel proton conducting polymer electrolyte and its application in microbial fuel cell. Mater Lett 164:551–553CrossRefGoogle Scholar
  3. Bhalla A, Kainth AS, Sani RK (2013) Draft genome sequence of lignocellulose-degrading thermophilic bacterium Geobacillus sp. strain WSUCF1. Genome Announc 1(4):e00595-13CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhalla A, Bischoff KM, Sani RK (2014a) Highly thermostable GH39 β-xylosidase from a Geobacillus sp. strain WSUCF1. BMC Biotechnol 14:963. Scholar
  5. Bhalla A, Bischoff KM, Uppugundla N, Balan V, Sani RK (2014b) Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1. Bioresour Technol 165:314–318CrossRefPubMedGoogle Scholar
  6. Bhalla A, Bischoff KM, Sani RK (2015) Highly thermostable xylanase production from a thermophilic Geobacillus sp. strain WSUCF1 utilizing lignocellulosic biomass. Front Bioeng Biotechnol 3:84CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bhuvaneswari A, Krishnaraj RN, Berchmans S (2013) Metamorphosis of pathogen to electrigen at the electrode/electrolye interface: direct electron transfer of Staphylococcus aureus leading to superior electrocatalytic activity. Electrochem Commun 34:25–28CrossRefGoogle Scholar
  8. Cao X, Huang X, Liang X, Xiao K, Zhou Y, Zhang X, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152CrossRefPubMedGoogle Scholar
  9. Catal T, Cysneiros D, O'Flaherty V, Leech D (2011) Electricity generation in single chamber microbial fuel cells using a carbon source sampled from anaerobic reactors utilizing grass silage. Bioresour Technol 102(1):404–410CrossRefPubMedGoogle Scholar
  10. Choi Y, Jung E, Park H, Paik SR, Jung S, Kim S (2004) Construction of microbial fuel cells using Thermophilic microorganisms, Bacillus licheniformis and Bacillus thermoglucosidasius. Bull Kor Chem Soc 25(6):813–818CrossRefGoogle Scholar
  11. Fu Q, Kobayashi H, Kuramochi Y, Xu J, Wakayama T, Maeda H, Sato K (2013) Bioelectrochemical analyses of a thermophilic biocathode catalyzing sustainable hydrogen production. Int J Hydrog Energy 38(35):15638–15645CrossRefGoogle Scholar
  12. Fu Q, Kuramochi Y, Fukushima N, Maeda H, Sato K, Kobayashi H (2015) Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis. Environ Sci Technol 49(2):1225–1232CrossRefPubMedGoogle Scholar
  13. Gregoire KP, Becker JG (2012) Design and characterization of a microbial fuel cell for the crop residue to electricity. Bioresour Technol 119:208–215CrossRefPubMedGoogle Scholar
  14. Hassan SH, Kim YS, Oh SE (2012) Power generation from cellulose using mixed and pure conversion of a lignocellulosic cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzym Microb Technol 51(5):269–273CrossRefGoogle Scholar
  15. Holmes DE et al (2006) Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ Microbiol 8(10):1805–1815CrossRefPubMedGoogle Scholar
  16. Karthikeyan R, Navanietha Krishnaraj R, Selvam A, Woon-Chung Wong J, Lee PKH, Leung MKH, Berchmans S (2016) Effect of composites based nickel foam anode in microbial fuel cell using Acetobacter aceti and Gluconobacter roseus as a biocatalysts. Bioresour Technol 217:113–120CrossRefPubMedGoogle Scholar
  17. Kobayashi H, Fu Q, Maeda H, Sato K (2017) Draft genome sequence of a novel Coriobacteriaceae sp. strain, EMTCatB1, reconstructed from the metagenome of a thermophilic electromethanogenic biocathode. Genome Announc 5:e00022-17CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kodama Y, Watanabe K (2011) Rhizomicrobium electricum sp. nov., a facultatively anaerobic, fermentative, prosthecate bacterium isolated from a cellulose-fed microbial fuel cell. Int J Syst Evol Microbiol 61:1781–1785CrossRefPubMedGoogle Scholar
  19. Kyne D, Bolin B, Chakraborty J, Grineski SE, Collins TW (2016) Emerging environmental justice issues in nuclear power and radioactive contamination. Int J Environ Res Public Health 13(7):700. Scholar
  20. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40(17):5181–5192CrossRefPubMedGoogle Scholar
  21. Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640CrossRefPubMedGoogle Scholar
  22. Logan BE, Wallack MJ, Kim K-Y, He W, Feng Y, Saikaly P (2015) Assessment of microbial fuel cell configurations and power densities. Environ Sci Technol Lett 2(8):206–214CrossRefGoogle Scholar
  23. Lu L, Ren NQ, Zhao X et al (2011) Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ Sci 4:1329–1336CrossRefGoogle Scholar
  24. Lu L, Xing D, Ren N, Logan BE (2012) Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour Technol 124:68–76CrossRefPubMedGoogle Scholar
  25. Malvankar NS, Lovley DR (2012) Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. ChemSusChem 5(6):1039–1046CrossRefPubMedGoogle Scholar
  26. Malvankar NS et al (2015) Structural basis for metallic-like conductivity in microbial nanowires. MBio 6(2):e00084CrossRefPubMedPubMedCentralGoogle Scholar
  27. May HD, Evans PJ, LaBelle EV (2016) The bioelectrosynthesis of acetate. Curr Opin Biotechnol 42:225–233CrossRefPubMedGoogle Scholar
  28. Navanietha Krishnaraj R, Yu JS (2015) Systems biology approaches for microbial fuel cell applications. Bioenergy: Opportunities and Challenges. ISBN-10: 1771881097. Apple Academic Press, USACrossRefGoogle Scholar
  29. Navanietha Krishnaraj R, Karthikeyan R, Berchmans S, Chandran S, Pal P (2013) Functionalisation of electrochemically deposited chitosan films with alginate and Prussian blue for enhanced performance of Microbial fuel cells. Electrochim Acta 112:465–472CrossRefGoogle Scholar
  30. Navanietha Krishnaraj R, Berchmans S, Pal P (2014) Symbiosis of photosynthetic microorganisms with non-photosynthetic ones for the conversion of cellulosic mass into electrical energy and pigments. Cellulose 21:2349–2355CrossRefGoogle Scholar
  31. Navanietha Krishnaraj R, Berchmans S, Pal P (2015) The three-compartment microbial fuel cell: a new sustainable approach to bioelectricity generation from lignocellulosic biomass. Cellulose 22:655–662CrossRefGoogle Scholar
  32. Niessen J, Schrӧder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation – a bacterial fuel cell operating on starch. Electrochem Commun 6(9):955–958CrossRefGoogle Scholar
  33. Pandit GG, Sahu Sk, Puranik VD (2011) Natural radionuclides from coal fired thermal power plants-estimation of atmospheric release and inhalation risk. Radioprotection 46:S173–S179CrossRefGoogle Scholar
  34. Pant D, Singh A, Van Bogaert G, Olsen SI, Nigam PS, Diels L, Vanbroekhoven K (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2:1248–1263CrossRefGoogle Scholar
  35. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sust Energ Rev 15(3):1513–1524CrossRefGoogle Scholar
  36. Qu Y, Feng Y, Wang X, Liu J, Lv J, He W, Logan BE (2012) Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour Technol 106:89–94CrossRefPubMedGoogle Scholar
  37. Rabaey K, Rozendal RA (2010) Microbial electrosynthesis – revisiting the electrical route for microbial production. Nat Rev Microbiol 8(10):706–716CrossRefPubMedGoogle Scholar
  38. Rabaey K et al (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl Environ Microbiol 70(9):5373–5382CrossRefPubMedPubMedCentralGoogle Scholar
  39. Rathinam NK, Berchmans S, Salem D, Sani RK (2018) Rewiring the microbe-electrode interfaces with biologically reduced graphene oxide for improved bioelectrocatalysis. Bioresour Technol 256:195–200. Scholar
  40. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP, Sani RK (2010) Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101(22):8798–8806CrossRefPubMedGoogle Scholar
  41. Reguera G et al (2005) Extracellular electron transfer via microbial nanowires. Nature 435(7045):1098–1101CrossRefPubMedGoogle Scholar
  42. Ren Z, Ward TE, Regan JM (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ Sci Technol 41(13):4781–4786CrossRefPubMedGoogle Scholar
  43. Ren Z, Steinberg LM, Regan JM (2008) Electricity production and microbial biofilm characterization in cellulose-fed microbial fuel cells. Water Sci Technol 58(3):617–622CrossRefPubMedGoogle Scholar
  44. Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environ Microbiol 75(11):3673–3678CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schröder U, Harnisch F (2013) From microbial bioelectrocatalysis to microbial bioelectrochemical systems. In: Alkire RC, Kolb DM, Kibler LA, Lipkowski J (eds) Electrocatalysis, vol 14. Wiley-VCH, Weinheim. Scholar
  46. Schuetz B et al (2009) Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1. Appl Environ Microbiol 75(24):7789–7796CrossRefPubMedPubMedCentralGoogle Scholar
  47. Selvaraj R, Vidhya S, Navanietha Krishnaraj R, Perumal S, Sundaramoorthy S, Maruthamuthu S, Ponmariappan S, Vijayan M (2016) Utilization of soak liquor in microbial fuel cell. Fuel 181:148–156CrossRefGoogle Scholar
  48. Shehab NA, Ortiz-Medina JF, Katuri KP, Hari AR, Amy G, Logan BE, Saikaly PE (2017) Enrichment of extremophilic exoelectrogens in microbial electrolysis cells using Red Sea brine pools as inocula. Bioresour Technol 239:82–86CrossRefPubMedGoogle Scholar
  49. Shrestha N, Chilkoor G, Vemuri B, Rathinam NK, Sani RK, Gadhamshetty VR (2018) Extremophiles for microbial-electrochemistry applications: a critical review. Bioresour Technol.
  50. Sleutels TH, Ter Heijne A, Buisman CJ, Hamelers HV (2012) Bioelectrochemical systems: an outlook for practical applications. ChemSusChem 5(6):1012–1019. Scholar
  51. Suraniti E, Tsujimura S, Durand F, Mano N (2013) Thermophilic biocathode with bilirubin oxidase from Bacillus pumilus. Electrochem Commun 26:41–44CrossRefGoogle Scholar
  52. Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Factories 6:9. Scholar
  53. Vargas M et al (2013) Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens. MBio 4(2):e00105-13CrossRefPubMedPubMedCentralGoogle Scholar
  54. Wang X, Feng Y, Wang H, Qu Y, Yu Y, Ren N, Li N, Wang E, Lee H, Logan BE (2009) Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells. Environ Sci Technol 43(15):6088–6093CrossRefPubMedGoogle Scholar
  55. Wang Y, Guo WQ, Xing DF et al (2014) Hydrogen production using biocathode single-chamber microbial electrolysis cells fed by molasses wastewater at low temperature. Int J Hydrogen Energ 39:19369–19375CrossRefGoogle Scholar
  56. Wrighton KC, Agbo P, Warnecke F, Weber KA, Brodie EL, DeSantis TZ, Hugenholtz P, Andersen GL, Coates JD (2008) A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J 2:1146–1156CrossRefPubMedGoogle Scholar
  57. Yu L, Yuan Y, Tang J, Zhou S (2017) Thermophilic Moorella thermoautotrophica-immobilized cathode enhanced microbial electrosynthesis of acetate and formate from CO2. Bioelectrochemistry 117:23–28CrossRefPubMedGoogle Scholar
  58. Zang GL, Sheng GP, Tong ZH, Liu XW, Teng SX, Li WW, Yu HQ (2010) Direct electricity recovery from Canna indica by an air-cathode microbial fuel cell inoculated with rumen microorganisms. Environ Sci Technol 44(7):2715–2720CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Biological EngineeringSouth Dakota School of Mines and TechnologyRapid CityUSA
  2. 2.BuG ReMeDEE Consortia, South Dakota School of Mines and TechnologyRapid CityUSA
  3. 3.Composite and Nanocomposite Advanced Manufacturing-Biomaterials Center (CNAM-Bio Center)Rapid CityUSA
  4. 4.Chemistry and Applied Biological SciencesSouth Dakota School of Mines and TechnologyRapid CityUSA

Personalised recommendations