The Sound of Communication in Underwater Acoustic Sensor Networks

(Position Paper)
  • Michel Barbeau
  • Joaquin Garcia-Alfaro
  • Evangelos KranakisEmail author
  • Steven Porretta
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 223)


Underwater environments have never been much of a constraint to the rich animal life they support at all depths of our seas and oceans. Indeed, nature has taken advantage of this environment to develop a rich variety of efficient communication strategies through evolutionary change and adaptation. The wealth of knowledge to be discovered will continue to dazzle and fascinate the world. For underwater sensor network communication, acoustic signalling is the preferred choice for designers because sound propagation is the most efficient when compared to other forms, like thermal, light, and electromagnetic. It is within this acoustic environment that researchers have to innovate and develop new ideas and methodologies so as to advance the state-of-the-art. In this paper, several fundamental issues and connections are discussed that arise in the study of underwater wireless sensor networks. A variety of ideas and solutions for further research is proposed and fundamental issues in topology control, directional underwater transducers, and monitoring and surveillance are discussed.


Directional hydrophone and vibrator Monitoring and surveillance Neighbour discovery Underwater acoustic communications 


  1. 1.
    Aschner, R., Katz, M.J., Morgenstern, G.: Symmetric connectivity with directional antennas. Comput. Geom. 46(9), 1017–1026 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aslamazov, L., Varlamov, A.: The Wonders of Physics. World Scientific Publishing Co., Inc., Singapore (2012)zbMATHGoogle Scholar
  3. 3.
    Au, W.W.L.: The Sonar of Dolphins. Springer, New York (2012). Google Scholar
  4. 4.
    Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennas. In: Proceedings of the SPAA, pp. 344–351 (2008)Google Scholar
  5. 5.
    Du, J., Kranakis, E., Ponce, O.M., Rajsbaum, S.: Neighbor discovery in a sensor network with directional antennae. In: Erlebach, T., Nikoletseas, S., Orponen, P. (eds.) ALGOSENSORS 2011. LNCS, vol. 7111, pp. 57–71. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  6. 6.
    Durrani, M., Kalaugher, L.: Furry Logic: The Physics of Animal Life. Bloomsbury Sigma (2017)Google Scholar
  7. 7.
    Eftekhari Hesari, M., Kranakis, E., MacQuarrie, F., Morales Ponce, O.: Strong connectivity of sensor networks with double antennae. Theor. Comput. Sci. 610, 192–203 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gupta, H., Kumar, U., Das, S.R.: A topology control approach to using directional antennas in wireless mesh networks. In: IEEE International Conference on Communications, vol. 9(06), pp. 4083–4088 (2006)Google Scholar
  9. 9.
    Gupta, P., Kumar, P.R.: The capacity of wireless networks. IEEE Trans. Inf. Theory 46(2), 388–404 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Howe, T.: A modal analysis of acoustic propagation in the changing arctic environment. Master’s thesis, MIT, Department of Mechanical Engineering (2016)Google Scholar
  11. 11.
    Hu, L., Evans, D.: Using directional antennas to prevent wormhole attacks. In: Network and Distributed System Security Symposium (NDSS) (2004)Google Scholar
  12. 12.
    Kranakis, E., Krizanc, D., Modi, A., Morales Ponce, O.: Connectivity trade-offs in 3D wireless sensor networks using directional antennae. In: 25th IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2011, Anchorage, Alaska, USA. Conference Proceedings, 16–20 May 2011, pp. 345–351 (2011)Google Scholar
  13. 13.
    Kranakis, E., Krizanc, D., Morales Ponce, O.: Maintaining connectivity in sensor networks using directional antennae. In: Nikoletseas, S.E., Rolim, J.D.P. (eds.) Theoretical Aspects of Distributed Computing in Sensor Networks. Monographs in Theoretical Computer Science, pp. 59–84. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  14. 14.
    Kranakis, E., Krizanc, D., Williams, E.: Directional versus omnidirectional antennas for energy consumption and k-connectivity of networks of sensors. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 357–368. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  15. 15.
    Kranakis, E., MacQuarrie, F., Travizani Maffra, I.K., Morales Ponce, O.: Strong connectivity of wireless sensor networks with double directional antennae in 3D. In: Cichoń, J., Gȩbala, M., Klonowski, M. (eds.) ADHOC-NOW 2013. LNCS, vol. 7960, pp. 257–268. Springer, Heidelberg (2013). Google Scholar
  16. 16.
    Kranakis, E., MacQuarrie, F., Morales Ponce, O.: Connectivity and stretch factor trade-offs in wireless sensor networks with directional antennae. Theor. Comput. Sci. 590, 55–72 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Montemanni, R., Gambardella, L.M.: Minimum power symmetric connectivity problem in wireless networks: a new approach. In: Belding-Royer, E.M., Al Agha, K., Pujolle, G. (eds.) MWCN 2004. IFIP AICT, vol. 162, pp. 497–508. Springer, Boston (2005). CrossRefGoogle Scholar
  18. 18.
    University of Rhode Island Graduate School of Oceanography. Discovery of sound in the sea. Accessed 03 June 2017
  19. 19.
    Otnes, R., Voldhaug, J.E., Haavik, S.: On communication requirements in underwater surveillance networks. In: OCEANS 2008-MTS/IEEE Kobe Techno-Ocean, pp. 1–7. IEEE (2008)Google Scholar
  20. 20.
    Patek, S.N.: First-person: The benefits of “strange” science, 14 March 2016. Duke Magazine: Accessed 03 Mar 2017
  21. 21.
    Porretta, S.: Environmental communication optimization in underwater acoustic sensor networks, Masters Thesis in Computer Science, Carleton University (2017)Google Scholar
  22. 22.
    Porter, M.B.: The BELLHOP manual and user’s guide: Preliminary draft (2011)Google Scholar
  23. 23.
    Poulsen, A., Schmidt, H.: Acoustic noise properties in the rapidly changing Arctic Ocean. In: Proceedings of the 22nd International Congress on Acoustics (ICA), pp. 1–4, August 2016Google Scholar
  24. 24.
    Schmidt, H., Schneider, T.: Acoustic communication and navigation in the new arctic; a model case for environmental adaptation. In: 2016 IEEE Third Underwater Communications and Networking Conference (UComms), pp. 1–4, August 2016Google Scholar
  25. 25.
    Staaterman, E.R., Claverie, T., Patek, S.N.: Disentangling defense: the function of spiny lobster sounds. Behaviour 147(2), 235–258 (2010)CrossRefGoogle Scholar
  26. 26.
    Yi, S., Pei, Y., Kalyanaraman, S., Azimi-Sadjadi, B.: How is the capacity of ad hoc networks improved with directional antennas? Wireless Netw. 13(5), 635–648 (2007)CrossRefGoogle Scholar

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

Authors and Affiliations

  • Michel Barbeau
    • 1
  • Joaquin Garcia-Alfaro
    • 2
  • Evangelos Kranakis
    • 1
    Email author
  • Steven Porretta
    • 1
  1. 1.School of Computer ScienceCarleton UniversityOttawaCanada
  2. 2.Telecom SudParis, CNRS Samovar, UMR 5157EvryFrance

Personalised recommendations