Moment Generating Functions and Moments of Linear Positive Operators

  • Vijay Gupta
  • Neha Malik
  • Themistocles M. RassiasEmail author
Part of the Springer Optimization and Its Applications book series (SOIA, volume 131)


In the theory of approximation, moments play an important role in order to study the convergence of sequence of linear positive operators. Several new operators have been discussed in the past decade and their moments have been obtained by direct computation or by attaining the recurrence relation to get the higher moments. Using the concept of moment generating function, we provide an alternate approach to estimate the higher order moments. The present article deals with the m.g.f. of some of the important operators. We estimate the moments up to order six for some of the discrete operators and their Kantorovich variants.


  1. 1.
    Abel, U.: Asymptotic approximation with Kantorovich polynomials. Approx. Theory Appl. 14(3), 106–116 (1998)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abel, U., Ivan, M.: On a generalization of an approximation operator defined by A. Lupaş. Gen. Math. 15(1), 21–34 (2007)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Aral, A., Gupta, V.: On q-Baskakov type operators. Demons. Math. 42(1), 109–122 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Aral, A., Gupta, V., Agarwal, R.P.: Applications of q-Calculus in Operator Theory. Springer, New York (2013)CrossRefGoogle Scholar
  5. 5.
    Baskakov, V.A.: An instance of a sequence of linear positive operators in the space of continuous functions. Dokl. Akad. Nauk SSSR 113(2), 249–251 (1957) (in Russian)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bernstein, S.N.: Demonstration du Théoréme de Weierstrass fondée sur le calcul des Probabilités. Comm. Soc. Math. Kharkov 2. 13(1), 1–2 (1912)Google Scholar
  7. 7.
    Boyanov, B.D., Veselinov, V.M.: A note on the approximation of functions in an infinite interval by linear positive operators. Bull. Math. Soc. Sci. Math. Roum. 14(62), 9–13 (1970)MathSciNetzbMATHGoogle Scholar
  8. 8.
    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Grundlehren der Mathematischen Wissenschaften, Band 303. Springer, Berlin (1993)CrossRefGoogle Scholar
  9. 9.
    Ditzian, Z., Totik, V.: Moduli of Smoothness. Springer, New York (1987)CrossRefGoogle Scholar
  10. 10.
    Finta, Z., Govil, N.K., Gupta, V.: Some results on modified Szász-Mirakjan operators. J. Math. Anal. Appl. 327(2), 1284–1296 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Gal, S.G.: Overconvergence in Complex Approximation. Springer, New York (2013)CrossRefGoogle Scholar
  12. 12.
    Gonska, H., Pitul, P., Rasa, I.: General king-type operators. Result. Math. 53(3–4), 279–296 (2009)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gupta, V.: A note on modified Bernstein polynomials. Pure Appl. Math. Sci. 44, 1–4 (1996)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gupta, V., Agarwal, R.P.: Convergence Estimates in Approximation Theory. Springer, Cham (2014)CrossRefGoogle Scholar
  15. 15.
    Gupta, V., Malik, N.: Approximation for genuine summation-integral type link operators. Appl. Math. Comput. 260, 321–330 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gupta, V., Rassias, T.M.: Direct estimates for certain Szász type operators. Appl. Math. Comput. 251, 469–474 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Holhoş, A.: The rate of approximation of functions in an infinite interval by positive linear operators. Stud. Univ. Babeş-Bolyai, Math. 2, 133–142 (2010)Google Scholar
  18. 18.
    Jain, G.C., Pethe, S.: On the generalizations of Bernstein and Szász-Mirakjan operators. Nanta Math. 10, 185–193 (1977)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lupaṣ, A.: The approximation by means of some linear positive operators. In: Muller, M.W., Felten, M., Mache, D.H. (eds.) Approximation Theory (Proceedings of the International Dortmund Meeting IDoMAT 95, Held in Witten, March 13–17, 1995). Mathematical Research, vol. 86, pp.201–229. Akademie Verlag, Berlin (1995)Google Scholar
  20. 20.
    Malik, N.: Some approximation properties for generalized Srivastava-Gupta operators. Appl. Math. Comput. 269, 747–758 (2015)MathSciNetGoogle Scholar
  21. 21.
    Miheşan, V.: Uniform approximation with positive linear operators generated by generalized Baskakov method. Autom. Comput. Appl. Math. 7(1), 34–37 (1998)MathSciNetGoogle Scholar
  22. 22.
    Milovanović, G.V., Rassias, M.T.: Analytic Number Theory, Approximation Theory, and Special Functions. Springer, New York (2014)CrossRefGoogle Scholar
  23. 23.
    Mirakjan, G.M.: Approximation des fonctions continues au moyen de polynmes de la forme \( {\displaystyle e^{-nx}\sum \limits _{k=0}^{m_{n}}{C_{k,n}x^{k}}}\). Comptes rendus de l’Acadmie des sciences de l’URSS (in French). 31, 201–205 (1941)Google Scholar
  24. 24.
    Păltănea, R.: Approximation Theory Using Positive Linear Operators. Birkhäuser Basel, Boston (2004)CrossRefGoogle Scholar
  25. 25.
    Rassias, T.M., Gupta, V. (eds.) Mathematical Analysis, Approximation Theory and Their Applications Series. Springer Optimization and Its Applications, vol. 111. Springer, Berlin (2016). ISBN:978-3-319-31279-8zbMATHGoogle Scholar
  26. 26.
    Szász, O.: Generalizations of S. Bernstein’s polynomials to the infinite interval. J. Res. Natl. Bur. Stand. 45(3), 239–245 (1950)CrossRefGoogle Scholar
  27. 27.
    Tachev, G.T.: The complete asymptotic expansion for Bernstein operators. J. Math. Anal. Appl. 385(2), 1179–1183 (2012)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Widder, D.V.: The Laplace Transform. Princeton Mathematical Series. Princeton University Press, Princeton (1941)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Vijay Gupta
    • 1
  • Neha Malik
    • 1
  • Themistocles M. Rassias
    • 2
    Email author
  1. 1.Department of MathematicsNetaji Subhas Institute of TechnologyNew DelhiIndia
  2. 2.Department of MathematicsNational Technical University of AthensAthensGreece

Personalised recommendations