Advertisement

Case-Based Reasoning for Process Experience

Chapter
Part of the Studies in Systems, Decision and Control book series (SSDC, volume 141)

Abstract

The following chapter describes an integrated case-based reasoning (CBR) approach to process learning and experience management. This integrated CBR approach reflects domain knowledge and contextual information based on an enterprise ontology. The approach consists of a case repository, which contains experience items described using a specific case model. The case model reflects, on the one hand, the process logic, i.e. the flow of work, and on the other the business logic, which is the knowledge that can be used to achieve a result.

Keywords

Case-based reasoning Knowledge work Business process management Workflow systems Enterprise ontology Enterprise architecture Ontology-based case-based reasoning Experience management Knowledge-intensive processes 

References

  1. Adams M, Edmond D, ter Hofstede AHM (2003) The application of activity theory to dynamic workflow adaptation issues. In: Proceedings of the 2003 Pacific Asia conference on information systems (PACIS 2003), pp 1836–1852Google Scholar
  2. Allemang D, Hendler JA (2008) Semantic web for the working ontologist: effective modeling in RDFS and OWL. Morgan Kaufmann/Elsevier, San FranciscoGoogle Scholar
  3. Bach K, Althoff K-D (2012) Developing Case-based reasoning applications using myCBR 3. In: Agudo B, Watson I (eds) Case-based reasoning research and development SE—4, vol 7466. Springer, Heidelberg, pp 17–31.  https://doi.org/10.1007/978-3-642-32986-9_4 CrossRefGoogle Scholar
  4. Bello-Tomás JJ, González-Calero PA, Díaz-Agudo B (2004) JColibri: An object-oriented framework for building CBR systems. In: Funk P, González Calero P (eds) Advances in case-based reasoning SE—4, vol 3155. Springer, Heidelberg, pp 32–46.  https://doi.org/10.1007/978-3-540-28631-8_4 CrossRefGoogle Scholar
  5. Bergmann R (2002) Experience management: foundations, development methodology, and internet-based applications. Bergmann R (ed) vol 2432. Springer, Heidelberg.  https://doi.org/10.1007/3-540-45759-3
  6. Bergmann R, Althoff K-DK, Minor M, Reichle M, Bach K (2009) Case-based reasoning—introduction and recent developments. Künstliche Intelligenz: Spec Issue Case-Based Reasoning 23(1):5–11Google Scholar
  7. Bergmann R, Freßmann A, Maximini K, Maximini R, Sauer T (2006) Case-based support for collaborative business. In: Roth-Berghofer T, Göker M, Güvenir HA (eds), Proceedings of the 8th European Conference, ECCBR 2006 Fethiye, Turkey, 4–7 Sept 2006, vol 4106. Springer, Heidelberg, pp 519–533.  https://doi.org/10.1007/11805816_38
  8. Bergmann R, Schaaf M (2003) Structural case-based reasoning and ontology-based knowledge management: a perfect match? J Univ Comput Sci 9(7):608–626. http://www.jucs.org/jucs_9_7/structural_case_based_reasoning/bergmann_r.pdf. Accessed 19 April 2013
  9. Bichindaritz I (2004) Mémoire: case based reasoning meets the semantic web in biology and medicine. In: Funk P, González Calero P (eds) Advances in case-based reasoning SE—5, vol 3155. Springer, Heidelberg, pp 47–61.  https://doi.org/10.1007/978-3-540-28631-8_5 CrossRefGoogle Scholar
  10. Brander S, Hinkelmann K, Hu B, Martin A, Riss U, Thönssen B, Witschel H (2011) Refining process models through the analysis of informal work practiceGoogle Scholar
  11. Cognini R, Corradini F, Polini A, Re B (2015a) Using data-object flow relations to derive control flow variants in configurable business processes. In: Fournier F, Mendling J (eds), International workshops business process management workshops: BPM 2014, Eindhoven, The Netherlands, 7–8 Sept 2014, Revised Papers. Springer International Publishing, Cham, pp 210–221.  https://doi.org/10.1007/978-3-319-15895-2_19
  12. Cognini R, Corradini F, Polini A, Re B (2015b) Extending feature models to express variability in business process models. In: Persson A, Stirna J (eds), Proceedings of the international workshops advanced information systems engineering workshops: CAiSE 2015, Stockholm, Sweden, 8–9 June 2015, Springer International Publishing, Cham, pp 245–256.  https://doi.org/10.1007/978-3-319-19243-7_24
  13. Cognini R, Hinkelmann K, Martin A (2016) A case modelling language for process variant management in case-based reasoning. In: Reichert M, Reijers AH (eds), 13th international workshops business process management workshops: BPM 2015, 4th international workshop on adaptive case management and other non-workflow approaches to BPM: AdaptiveCM 2015, Innsbruck, Austria, 31 Aug–3 Sept 2015, Revised. Springer International Publishing, Cham, pp 30–42.  https://doi.org/10.1007/978-3-319-42887-1_3
  14. Cohen D, Crabtree B (2006) Triangulation. Qualitative research guidelines project, Robert Wood Johnson Foundation. http://www.qualres.org/HomeTria-3692.html. Accessed 26 May 2016
  15. Davenport TH (2005) Knowledge work processes. In: Thinking for a living: how to get better performance and results from knowledge workersGoogle Scholar
  16. Davenport TH (2010) Process management for knowledge work. In: vom Brocke J, Rosemann M (eds) Handbook on business process management 1. Springer, Heidelberg, pp 17–36.  https://doi.org/10.1007/978-3-642-00416-2_2 CrossRefGoogle Scholar
  17. Eberle H, Unger T, Leymann F (2009) Process fragments. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), LNCS, vol 5870, pp 398–405.  https://doi.org/10.1007/978-3-642-05148-7_29
  18. El-Farr HK (2009) Knowledge work and workers: a critical literature review, vol 1Google Scholar
  19. Gadatsch A (2012) Grundkurs Geschäftsprozess-Management (7. Auflage.). Wiesbaden: Vieweg+Teubner Verlag.  https://doi.org/10.1007/978-3-8348-2428-8
  20. Hevner AR, March ST, Park J, Ram S (2004) Design science in information systems research. MIS Quarterly 28(1):75–105. http://www.jstor.org/stable/25148625. Accessed 13 Apr 2011
  21. Ju K, Su B, Zhou D, Zhang Y (2016) An incentive-oriented early warning system for predicting the co-movements between oil price shocks and macroeconomy. Appl Energy 163:452–463.  https://doi.org/10.1016/j.apenergy.2015.11.015 CrossRefGoogle Scholar
  22. Kolodner JL (1993) Case-based reasoning. Morgan Kaufmann Publishers, San Mateo, CACrossRefMATHGoogle Scholar
  23. Leake DB (1996) CBR in context: the present and future. In: Leake DB (ed) Case-based reasoning: experiences, lessons, and future directions. AAAI Press/MIT Press, Menlo Park, pp 1–35Google Scholar
  24. Madhusudan T, Zhao JL, Marshall B (2004) A case-based reasoning framework for workflow model management. Data Knowl Eng 50(1):87–115. http://www.sciencedirect.com/science/article/pii/S0169023X04000060
  25. Martin A (2016) A combined case-based reasoning and process execution approach for knowledge-intensive work. PhD thesis. University of South Africa, Pretoria. Retrieved from http://hdl.handle.net/10500/22796
  26. Martin A, Brun R (2010) Agile process execution with KISSmir. In: 5th international workshop on semantic business process management collocated with 7th extended semantic web conference. Heraklion, GreeceGoogle Scholar
  27. Martin A, Emmenegger S, Hinkelmann K, Thönssen B (2017) A viewpoint-based case-based reasoning approach utilising an enterprise architecture ontology for experience management. Enterp Inf Syst 11(4):551–575.  https://doi.org/10.1080/17517575.2016.1161239 CrossRefGoogle Scholar
  28. Martin A, Emmenegger S, Wilke G (2013) Integrating an enterprise architecture ontology in a case-based reasoning approach for project knowledge. In: Proceedings of the first international conference on enterprise systems: ES 2013. IEEE, Cape Town, pp. 1–12.  https://doi.org/10.1109/es.2013.6690082
  29. Maximini K, Maximini R (2007) Collaborative agent-based knowledge engine. wi2.uni-trier.de. Trier, Germany. http://www.wi2.uni-trier.de/publications/2007_CAKE_Maximini.pdf. Accessed 9 Aug 2012
  30. Patton MQ (2015) Qualitative research and evaluation methods: integrating theory and practice, 4th ed. SAGE Publications IncGoogle Scholar
  31. Peffers K, Tuunanen T, Rothenberger MA, Chatterjee S (2007) A design science research methodology for information systems research. J Manage Inf Syst 24(3):45–77.  https://doi.org/10.2753/MIS0742-1222240302 CrossRefGoogle Scholar
  32. Recio-García JA, Díaz-Agudo B, González-Calero P (2008) jCOLIBRI2 Tutorial. Department of Software Engineering and Artificial Intelligence, University Complutense of Madrid, MadridGoogle Scholar
  33. Recio-García JA, González-Calero PA, Díaz-Agudo B (2014) jcolibri2: a framework for building case-based reasoning systems. Sci Comput Prog 79(Group 910494):126–145.  https://doi.org/10.1016/j.scico.2012.04.002
  34. Roth-Berghofer T, Bahls D (2008) Explanation capabilities of the open source case-based reasoning tool myCBR. In: Petridis M, Wiratunga N (eds), UK workshop on case-based reasoning UKCBR 2008, pp 23–34. http://mycbr-project.net/downloads/ukcbr08.pdf. Accessed 29 Mar 2013
  35. Thönssen B, Witschel H-F, Hinkelmann K, Martin A (2016) Experience knowledge mechanisms and representation. Learn PAd—Model-Based Social Learning for Public Administrations—EU FP7-ICT-2013-11/619583, Pisa, Italy. puma.isti.cnr.it/dfdownloadnew.php?ident=/LPAd/2016-EC-005
  36. Vaishnavi V, Kuechler B (2004) Design science research in information systems. Page on design science research in information systems (IS); last updated: 15 Nov 2015. http://www.desrist.org/design-research-in-information-systems/. Accessed 15 Nov 2015
  37. van Heijst G, Schreiber AT, Wielinga B (1997) Using explicit ontologies in KBS development. Int J Hum Comput Stud 46(2–3):183–292.  https://doi.org/10.1006/ijhc.1996.0090 CrossRefMATHGoogle Scholar
  38. W3C (2012) OWL 2 web ontology language. http://www.w3.org/TR/owl2-overview/
  39. W3C (2014a) RDF 1.1 concepts and abstract syntax. http://www.w3.org/TR/rdf11-concepts/
  40. W3C (2014b) RDF Schema 1.1. http://www.w3.org/TR/rdf-schema/
  41. W3C (2014c) RDF 1.1 Turtle. http://www.w3.org/TR/turtle/
  42. Watson I (1999) Case-based reasoning is a methodology not a technology. Knowl-Based Syst 12(5–6):303–308.  https://doi.org/10.1016/S0950-7051(99)00020-9 MathSciNetCrossRefGoogle Scholar
  43. Witschel H-F, Martin A, Emmenegger S, Lutz J (2015) A new retrieval function for ontology-based complex case descriptions. In: International workshop case-based reasoning CBR-MD 2015. ibai-publishing, HamburgGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for Information SystemsUniversity of Applied Sciences and Arts Northwestern Switzerland (FHNW)OltenSwitzerland
  2. 2.School of ComputingUniversity of South AfricaRoodepoort, JohannesburgSouth Africa
  3. 3.Department of InformaticsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations