Advertisement

Measuring Learners’ Interest in Computing (Education): Development of an Instrument and First Results

  • Torsten Brinda
  • David Tobinski
  • Stefan Schwinem
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 515)

Abstract

So far, there is hardly any empirical research on the question of what raises or influences the interest of school learners in computer science or computing education. Aspects to be considered are for example pedagogical decisions of the teacher concerning contexts, phenomena, situations, or concepts to which a lesson or a lesson sequence refers, planned learner activities and many others. This paper analyses a model for describing interest in physics on its transferability to computer science, reports about the development of an online questionnaire for investigating the computing-related interests of school learners and gives results of a first empirical pilot study (based on N = 141 datasets). Based on the participants’ answers concerning socio-demographical aspects, the computing interest of different groups of learners was analyzed. A higher level of computing interest was found at male pupils, learners who indicated that they were striving for a computing-related job, that computing was their favorite school subject, or that they had good or very good school marks in mathematics or computing.

Keywords

Learners’ interest Computing interest Secondary education Questionnaire Empirical study Explorative study 

References

  1. 1.
    United Nations: Convention on the rights of the child. Adopted and opened for signature, ratification and accession by general assembly resolution 44/25 of 20 November 1989; entry into force 2 September 1990, in accordance with article 49 (1989). http://www.ohchr.org/EN/ProfessionalInterest/Pages/CRC.aspx
  2. 2.
    Helmke, A.: Unterrichtsqualität und Lehrerprofessionalität. Diagnose, Evaluation und Verbesserung des Unterrichts. Kallmeyer/Klett, Seelze-Velber (2012)Google Scholar
  3. 3.
    Kunter, M., Trautwein, U.: Psychologie des Unterrichts. Schöningh, Paderborn (2013)Google Scholar
  4. 4.
    Krapp, A., Prenzel, M.: Research on interest in science: theories, methods, and findings. Int. J. Sci. Educ. 33(1), 27–50 (2011)CrossRefGoogle Scholar
  5. 5.
    Schwinem, S.: Schülerinteresse im Informatikunterricht. Master thesis. University of Duisburg-Essen/Germany, Faculty of Business Administration and Economics (2016). (in German)Google Scholar
  6. 6.
    Häußler, P.: Measuring students’ interest in physics – design and results of a cross-sectional study in the Federal Republic of Germany. Int. J. Sci. Educ. 9(1), 79–92 (1987)CrossRefGoogle Scholar
  7. 7.
    Holstermann, N., Bögeholz, S.: Interesse von Jungen und Mädchen an naturwissenschaftlichen Themen am Ende der Sekundarstufe I. Zeitschrift für Didaktik der Naturwissenschaften 13, 71–86 (2007). (in German)Google Scholar
  8. 8.
    Barthel, H.: Informatikunterricht. Wünsche und Erwartungen von Schülerinnen und Schülern. Dissertation. University of Kiel, Germany, Department of Philosophy (2010). (in German)Google Scholar
  9. 9.
    Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS – educational standards for computer science in lower secondary education. In: ACM (ed.) Proceedings of the 2009 ACM SIGCSE Annual Conference on Innovation and Technology in Computer Science Education, pp. 288–292. ACM Press, New York (2009)Google Scholar
  10. 10.
    German Informatics Association: Educational Standards for Computing in Upper Secondary Education (2016). http://www.informatikstandards.de/docs/Bildungsstandards_SII.pdf. (in German)
  11. 11.
    Ministry of School and Further Education of North Rhine-Westphalia/Germany: Core curriculum for computing in upper secondary education (2013). http://www.schulentwicklung.nrw.de/lehrplaene/upload/klp_SII/if/KLP_GOSt_Informatik.pdf. (in German)
  12. 12.
    Diethelm, I., Hildebrandt, C., Krekeler, L.: Implementation of computer science in context – a research perspective regarding teacher-training. In: Proceeding of the Koli Calling Conference, pp. 97–100 (2009)Google Scholar
  13. 13.
    Humbert, L., Puhlmann, H.: Essential ingredients of literacy in informatics. In: Magenheim, J., Schubert, S. (eds.) Informatics and Student Assessment. Concepts of Empirical Research and Standardisation of Measurement in the Area of Didactics of Informatics, Köllen, Bonn, pp. 65–76 (2004)Google Scholar
  14. 14.
    Medienpädagogischer Forschungsverbund Südwest: JIM-Studie 2015. Jugend, Information, (Multi-)Media. Basisuntersuchung zum Medienumgang 12- bis 19-Jähriger (2015). http://www.mpfs.de/fileadmin/JIM-pdf15/JIM_2015.pdf. (in German)
  15. 15.
    Brinda, T., Diethelm, I., Gemulla, R., Romeike, R., Schöning, J., Schulte, C., et al.: Dagstuhl Declaration: Education in the Digital Networked World (2016). https://www.gi.de/fileadmin/redaktion/Themen/dagstuhl-erklaerung-bildung-in-der-digitalen-welt-2016.pdf. (in German)
  16. 16.
    Brinda, T.: Declaration of the Department of “Computing and Education/Computing Education” of the German Informatics Association concerning the Strategy of the German Ministries of Cultural Affairs on “Education in Digital World” (2016). https://fb-iad.gi.de/fileadmin/stellungnahmen/gi-fb-iad-stellungnahme-kmk-strategie-digitale-bildung.pdf. (in German)
  17. 17.
    Ferdinand, H.: Entwicklung von Fachinteresse: Längsschnittstudie zu Interessenverläufen und Determinanten positiver Entwicklung in der Schule. Waxmann, Münster (2014). (in German)Google Scholar
  18. 18.
    Bühner, M.: Einführung in die Test- und Fragebogenkonstruktion. Pearson Studium, Munich/Boston (2011). (in German)Google Scholar
  19. 19.
    Medienpädagogischer Forschungsverbund Südwest: KIM-Studie 2014. Kinder + Medien, Computer + Internet. Basisuntersuchung zum Medienumgang 6- bis 13-Jähriger (2014). http://www.mpfs.de/fileadmin/KIM-pdf14/KIM14.pdf. (in German)
  20. 20.
    Computer Science Teachers Association (ed.): CS Standards Crosswalk with CSTA K-12 Computer Science Standards for State/District/Course Standards (2011). http://csta.acm.org/Curriculum/sub/K12Standards.html
  21. 21.
    Rasch, B., Friese, M., Hofmann, W., Naumann, E.: Quantitative Methoden 2: Einführung in die Statistik für Psychologen und Sozialwissenschaftler. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43548-9. (in German)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Torsten Brinda
    • 1
  • David Tobinski
    • 2
  • Stefan Schwinem
    • 1
  1. 1.Computing Education Research GroupUniversity of Duisburg-EssenEssenGermany
  2. 2.Cognitive and Educational PsychologyUniversity of Duisburg-EssenEssenGermany

Personalised recommendations