Locating Nonlinearity in Mechanical Systems: A Dynamic Network Perspective

  • J. P. NoëlEmail author
  • M. Schoukens
  • P. M. J. Van den Hof
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Though it is a crucial step for most identification methods in nonlinear structural dynamics, nonlinearity location is a sparsely addressed topic in the literature. In fact, locating nonlinearities in mechanical systems turns out to be a challenging problem when treated nonparametrically, that is, without fitting a model. The present contribution takes a new look at this problem by exploiting some recent developments in the identification of dynamic networks, originating from the systems and control community.


Nonlinear structural dynamics Nonlinear system identification Nonlinearity location Best linear approximation Dynamic networks 



The author J.P. Noël is a Postdoctoral Researcher of the Fonds de la Recherche Scientifique – FNRS which is gratefully acknowledged.


  1. 1.
    Van den Hof, P., Dankers, A., Heuberger, P., Bombois, X.: Identification of dynamic models in complex networks with prediction error methods – basic methods for consistent module estimates. Automatica 49, 2994–3006 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Dankers, A., Van den Hof, P., Bombois, X., Heuberger, P.: Errors-in-variables identification in dynamic networks – consistency results for an instrumental variable approach. Automatica 62, 39–50 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Weerts, H.H., Van den Hof, P., Dankers, A.G.: Identification of dynamic networks with rank-reduced noise. IFAC PapersOnLine 50(1), 10562–10567 (2017)CrossRefGoogle Scholar
  4. 4.
    Schoukens, M., Van den Hof, P.: Detecting and quantifying nonlinearity in dynamic networks. Automatica (2017, in review)Google Scholar
  5. 5.
    Schoukens, J., Pintelon, R., Rolain, Y., Schoukens, M., Tiels, K., Vanbeylen, L., Van Mulders, A., ,Vandersteen, G.: Structure discrimination in block-oriented models using linear approximations: a theoretic framework. Automatica 53, 225–234 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Schoukens, M., Tiels, K.: Identification of block-oriented nonlinear systems starting from linear approximations: a survey. Automatica 85, 272–292 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Schoukens, J., Vaes, M., Pintelon, R., Linear system identification in a nonlinear setting. IEEE Control Syst. 36(3), 38–69 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Wernholt, E., Gunnarsson, S.: Estimation of nonlinear effects in frequency domain identification of industrial robots, IEEE Trans. Instrum. Meas. 57(4), 856–863 (2008)CrossRefGoogle Scholar
  9. 9.
    Vaes, M., Schoukens, J., Peeters, B., Debille, J., Dossogne, T., Noël, J., Grappasonni, C., Kerschen, G.: Nonlinear ground vibration identification of an F-16 aicraft – part 1: fast nonparametric analysis of distortions in FRF measurements. In: Proceedings of the International Forum on Aeroelasticity and Structural Dynamics (IFASD), Saint Petersburg (2015)Google Scholar
  10. 10.
    Schoukens, J., Swevers, J., Pintelon, R., Van der Auweraer, H.: Excitation design for FRF measurements in the presence of non-linear distortions. Mech. Syst. Signal Process. 18, 727–738 (2004)CrossRefGoogle Scholar
  11. 11.
    Pintelon, R., Schoukens, J.: System Identification: A Frequency Domain Approach. IEEE Press, Piscataway (2001)CrossRefGoogle Scholar

Copyright information

© The Society for Experimental Mechanics, Inc. 2019

Authors and Affiliations

  • J. P. Noël
    • 1
    Email author
  • M. Schoukens
    • 2
  • P. M. J. Van den Hof
    • 2
  1. 1.Space Structures and Systems Laboratory, Department of Aerospace and Mechanical EngineeringUniversity of LiègeLiègeBelgium
  2. 2.Control Systems GroupTechnical University of EindhovenEindhovenThe Netherlands

Personalised recommendations