Advertisement

Aortic Valve Replacement

  • Jan Dominik
  • Pavel Zacek
  • Jan Vojacek
Chapter

Abstract

Aortic valve replacement is a procedure unique in its ability to resolve significant and worsening aortic valve disease of any aetiology. The valve substitute can be a mechanical valve (usually a bileaflet valve), bioprosthesis (stented, stentless, sutureless, or transcathetral), allograft, or autograft. Specific advantages and drawbacks of respective type of the valve substitute are discussed in detail. The in-hospital mortality of aortic valve replacement ranges between 2 and 3%. Potential valve-related complications comprise thromboembolic and bleeding events, valve thrombosis, degeneration of bioprostheses, paravalvar leak, and patient–prosthesis mismatch.

Keywords

Aortic valve replacement Mechanical heart valves Bioprostheses Patient–prosthesis mismatch Prosthetic valve endocarditis Valve thrombosis Structural valve deterioration Paraprosthetic leak In-hospital mortality 

References

  1. 1.
    Hufnagel CA, Harvey WP. The surgical correction of aortic regurgitation preliminary report. Bull Georgetown Univ Med Cent. 1953;6:60–1.PubMedGoogle Scholar
  2. 2.
    Westaby S. Development of surgery for valvular heart disease. In: Westaby S, editor. Landmarks in cardiac surgery. Oxford: ISIS Medical Media; 1997. p. 139–85.Google Scholar
  3. 3.
    Harken DE, Soroff HS, Taylor WJ, et al. Partial and complete prostheses in aortic insufficiency. J Thorac Cardiovasc Surg. 1960;40:744–62.PubMedGoogle Scholar
  4. 4.
    Ross DN. Homograft replacement of the aortic valve. Lancet. 1962;2:487.PubMedCrossRefGoogle Scholar
  5. 5.
    Barratt-Boyes BG. Homograft aortic valve replacement in aortic incompetence and stenosis. Thorax. 1964;19:131–50.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Senning A, Rothlin M. Reconstruction of the aortic valve with fascia lata. Initial and long term results. Vasc Surg. 1973;7:29–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Senning A. Aortic valve replacement with fascia lata. Acta Chir Scand Suppl. 1966;356B:17–20.PubMedGoogle Scholar
  8. 8.
    Zerbini EJ, Puig LB. The dura mater allograft valve. In: Ionescu MI, editor. Tissue heart valves. London: Butterworth; 1979. p. 253–301.Google Scholar
  9. 9.
    Binet JP, Duran CG, Carpenter A, et al. Heterologous aortic valve transplantation. Lancet. 1965;2:1275.PubMedCrossRefGoogle Scholar
  10. 10.
    David TE, Bos J, Rakowski H. Aortic valve replacement with the Toronto SPV bioprosthesis. J Heart Valve Dis. 1992;1:244–8.PubMedGoogle Scholar
  11. 11.
    David TE, Pollick C, Bos J. Aortic valve replacement with stentless porcine aortic bioprosthesis. J Thorac Cardiovasc Surg. 1990;99:113–8.PubMedGoogle Scholar
  12. 12.
    Ali A, Halstead JC, Cafferty F, et al. Early clinical and hemodynamic outcomes after stented and stentless aortic valve replacement: results from a randomized controlled trial. Ann Thorac Surg. 2007;83:2162–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Bove T, Van Belleghem Y, Francois K, et al. Stentless and stented aortic valve replacement in elderly patients: factors affecting midterm clinical and hemodynamical outcome. Eur J Cardiothorac Surg. 2006;30:706–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Cohen G, Christakis GT, Joyner CD, et al. Are stentless valves hemodynamically superior to stented valves? A prospective randomized trial. Ann Thorac Surg. 2002;73:767–75; discussion 775–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Desai ND, Merin O, Cohen GN, et al. Long-term results of aortic valve replacement with the St. Jude Toronto stentless porcine valve. Ann Thorac Surg. 2004;78:2076–83; discussion 2076–83.PubMedCrossRefGoogle Scholar
  16. 16.
    Doss M, Martens S, Wood JP, et al. Performance of stentless versus stented aortic valve bioprostheses in the elderly patient: a prospective randomized trial. Eur J Cardiothorac Surg. 2003;23:299–304.PubMedCrossRefGoogle Scholar
  17. 17.
    Chambers JB, Rimington HM, Hodson F, et al. The subcoronary Toronto stentless versus supra-annular perimount stented replacement aortic valve: early clinical and hemodynamic results of a randomized comparison in 160 patients. J Thorac Cardiovasc Surg. 2006;131:878–2.PubMedCrossRefGoogle Scholar
  18. 18.
    Kallikourdis A, Jacob S. Is a stentless aortic valve superior to conventional bioprosthetic valves for aortic valve replacement? Interact Cardiovasc Thorac Surg. 2007;6:665–72.PubMedCrossRefGoogle Scholar
  19. 19.
    Risteski PS, Martens S, Rouhollahpour A, et al. Prospective randomized evaluation of stentless vs. stented aortic biologic prosthetic valves in the elderly at five years. Interact Cardiovasc Thorac Surg. 2009;8:449–53.PubMedCrossRefGoogle Scholar
  20. 20.
    Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation. 2002;106:3006–8.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Webb JG, Chandavimol M, Thompson CR, et al. Percutaneous aortic valve implantation retrograde from the femoral artery. Circulation. 2006;113:842–50.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ye J, Cheung A, Lichtenstein SV, et al. Transapical aortic valve implantation in humans. J Thorac Cardiovasc Surg. 2006;131:1194–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Funkat A, Beckmann A, Lewandowski J, et al. Cardiac surgery in Germany during 2013: a report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg. 2014;62:380–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Beckmann A, Funkat AK, Lewandowski J, et al. Cardiac surgery in Germany during 2014: a report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg. 2015;63:258–69.PubMedCrossRefGoogle Scholar
  25. 25.
    Beckmann A, Funkat AK, Lewandowski J, et al. German Heart Surgery Report 2015: the Annual Updated Registry of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg. 2016;64:462–74.PubMedCrossRefGoogle Scholar
  26. 26.
    Miceli A, Gilmanov D, Murzi M, et al. Minimally invasive aortic valve replacement with a sutureless valve through a right anterior mini-thoracotomy versus transcatheter aortic valve implantation in high-risk patients. Eur J Cardiothorac Surg. 2016;49:960–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Gersak B, Fischlein T, Folliguet TA, et al. Sutureless, rapid deployment valves and stented bioprosthesis in aortic valve replacement: recommendations of an International Expert Consensus Panel. Eur J Cardiothorac Surg. 2016;49:709–18.PubMedCrossRefGoogle Scholar
  28. 28.
    Magovern GJ, Liebler GA, Park SB, et al. Twenty-five-year review of the Magovern-Cromie sutureless aortic valve. Ann Thorac Surg. 1989;48:S33–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Zlotnick AY, Shiran A, Lewis BS, et al. Images in cardiovascular medicine. A perfectly functioning Magovern-Cromie sutureless prosthetic aortic valve 42 years after implantation. Circulation. 2008;117:e1–2.PubMedCrossRefGoogle Scholar
  30. 30.
    Ross DN. Replacement of aortic and mitral valves with a pulmonary autograft. Lancet. 1967;2:956–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Andreas M, Wiedemann D, Seebacher G, et al. The Ross procedure offers excellent survival compared with mechanical aortic valve replacement in a real-world setting dagger. Eur J Cardiothorac Surg. 2014;46:409–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Sievers HH. Autologous is the best. Eur J Cardiothorac Surg. 2014;46:423–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Yacoub MH, El-Hamamsy I, Sievers HH, et al. Under-use of the Ross operation—a lost opportunity. Lancet. 2014;384:559–60.PubMedCrossRefGoogle Scholar
  34. 34.
    Sievers HH, Stierle U, Charitos EI, et al. A multicentre evaluation of the autograft procedure for young patients undergoing aortic valve replacement: update on the German Ross Registry. Eur J Cardiothorac Surg. 2016;49:212–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Vojáček J, Špatenka J. Quo vadis Rossova operace? Interv Akut Kardiol. 2012;11:175–6.Google Scholar
  36. 36.
    Ozaki S, Kawase I, Yamashita H, et al. A total of 404 cases of aortic valve reconstruction with glutaraldehyde-treated autologous pericardium. J Thorac Cardiovasc Surg. 2014;147:301–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Ozaki S, Kawase I, Yamashita H, et al. Aortic valve reconstruction using autologous pericardium for patients aged less than 60 years. J Thorac Cardiovasc Surg. 2014;148:934–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Dominik J, Zacek P. Overview of the valve replacement devices. In: Dominik J, Zacek P, editors. Heart valve surgery. Heidelberg: Springer; 2010. p. 42–80.CrossRefGoogle Scholar
  39. 39.
    Gott VL, Alejo DE, Cameron DE. Mechanical heart valves: 50 years of evolution. Ann Thorac Surg. 2003;76:S2230–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Beckmann A, Funkat AK, Lewandowski J, et al. Cardiac surgery in Germany during 2012: a report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac Cardiovasc Surg. 2014;62:5–17.PubMedGoogle Scholar
  41. 41.
    Holzhey D, Mohr FW, Walther T, et al. Current results of surgical aortic valve replacement: insights from the German Aortic Valve Registry. Ann Thorac Surg. 2016;101:658–66.PubMedCrossRefGoogle Scholar
  42. 42.
    Executive Summaries Adult Cardiac Surgery Database 2017. The Society of Thoracic Surgeons. http://www.sts.org/sts-national-database/database-managers/executive-summaries.
  43. 43.
    Agarwal S, Garg A, Parashar A, et al. In-hospital mortality and stroke after surgical aortic valve replacement: a nationwide perspective. J Thorac Cardiovasc Surg. 2015;150:571–8 e8.PubMedCrossRefGoogle Scholar
  44. 44.
    Dunning J, Gao H, Chambers J, et al. Aortic valve surgery: marked increases in volume and significant decreases in mechanical valve use—an analysis of 41,227 patients over 5 years from the Society for Cardiothoracic Surgery in Great Britain and Ireland National Database. J Thorac Cardiovasc Surg. 2011;142:776–782 e3.PubMedCrossRefGoogle Scholar
  45. 45.
    Grant SW, Hickey GL, Ludman P, et al. Activity and outcomes for aortic valve implantations performed in England and Wales since the introduction of transcatheter aortic valve implantation. Eur J Cardiothorac Surg. 2016;49:1164–73.PubMedCrossRefGoogle Scholar
  46. 46.
    Siregar S, de Heer F, Groenwold RH, et al. Trends and outcomes of valve surgery: 16-year results of Netherlands Cardiac Surgery National Database. Eur J Cardiothorac Surg. 2014;46:386–97; discussion 397.PubMedCrossRefGoogle Scholar
  47. 47.
    Committee for Scientific Affairs, The Japanese Association for Thoracic Surgery, Masuda M, Okumura M, et al. Thoracic and cardiovascular surgery in Japan during 2014 : Annual report by The Japanese Association for Thoracic Surgery. Gen Thorac Cardiovasc Surg. 2016;64:665–97.CrossRefGoogle Scholar
  48. 48.
    Lytle BW, Cosgrove DM, Taylor PC, et al. Primary isolated aortic valve replacement. Early and late results. J Thorac Cardiovasc Surg. 1989;97:675–94.PubMedGoogle Scholar
  49. 49.
    Nashef SA, Roques F, Sharples LD, et al. EuroSCORE II. Eur J Cardiothorac Surg. 2012;41:734–44; discussion 744–5.PubMedCrossRefGoogle Scholar
  50. 50.
    Huber S, Burckhardt D, Raeder EA, et al. Complications in patients with cloth-covered Starr-Edwards prostheses. J Cardiovasc Surg. 1980;21:19–24.Google Scholar
  51. 51.
    Brzek V, Dominik J. Reoperace Starrovy-Edwardsovy chlopně po 22 letech. Cor Vasa. 1997;39:61–2.Google Scholar
  52. 52.
    Birkmeyer JD, Marrin CA, O’Connor GT. Should patients with Bjork-Shiley valves undergo prophylactic replacement? Lancet. 1992;340:520–3.PubMedCrossRefGoogle Scholar
  53. 53.
    Blackstone EH, Kirklin JW. Recommendations for prophylactic removal of heart valve prostheses. J Heart Valve Dis. 1992;1:3–14.PubMedGoogle Scholar
  54. 54.
    van der Graaf Y, de Waard F, van Herwerden LA, et al. Risk of strut fracture of Bjork-Shiley valves. Lancet. 1992;339:257–61.PubMedCrossRefGoogle Scholar
  55. 55.
    Lorusso R, Gelsomino S, Luca F, et al. Type 2 diabetes mellitus is associated with faster degeneration of bioprosthetic valve: results from a propensity score-matched Italian multicenter study. Circulation. 2012;125:604–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Briand M, Pibarot P, Despres JP, et al. Metabolic syndrome is associated with faster degeneration of bioprosthetic valves. Circulation. 2006;114:I512–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Nollert G, Miksch J, Kreuzer E, et al. Risk factors for atherosclerosis and the degeneration of pericardial valves after aortic valve replacement. J Thorac Cardiovasc Surg. 2003;126:965–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Farivar RS, Cohn LH. Hypercholesterolemia is a risk factor for bioprosthetic valve calcification and explantation. J Thorac Cardiovasc Surg. 2003;126:969–75.PubMedCrossRefGoogle Scholar
  59. 59.
    Flameng W, Herregods MC, Vercalsteren M, et al. Prosthesis-patient mismatch predicts structural valve degeneration in bioprosthetic heart valves. Circulation. 2010;121:2123–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Eichinger WB, Hettich IM, Ruzicka DJ, et al. Twenty-year experience with the St. Jude medical Biocor bioprosthesis in the aortic position. Ann Thorac Surg. 2008;86:1204–10.PubMedCrossRefGoogle Scholar
  61. 61.
    Aazami M, Schafers HJ. Advances in heart valve surgery. J Interv Cardiol. 2003;16:535–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Jamieson WR, Koerfer R, Yankah CA, et al. Mitroflow aortic pericardial bioprosthesis—clinical performance. Eur J Cardiothorac Surg. 2009;36:818–24.PubMedCrossRefGoogle Scholar
  63. 63.
    Nishida T, Tominaga R. A look at recent improvements in the durability of tissue valves. Gen Thorac Cardiovasc Surg. 2013;61:182–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Rizzoli G, Mirone S, Ius P, et al. Fifteen-year results with the Hancock II valve: a multicenter experience. J Thorac Cardiovasc Surg. 2006;132:602–9, 609 e1–4.PubMedCrossRefGoogle Scholar
  65. 65.
    Borger MA, Ivanov J, Armstrong S, et al. Twenty-year results of the Hancock II bioprosthesis. J Heart Valve Dis. 2006;15:49–55; discussion 55–6.PubMedGoogle Scholar
  66. 66.
    Une D, Ruel M, David TE. Twenty-year durability of the aortic Hancock II bioprosthesis in young patients: is it durable enough? Eur J Cardiothorac Surg. 2014;46:825–30.PubMedCrossRefGoogle Scholar
  67. 67.
    Valfre C, Ius P, Minniti G, et al. The fate of Hancock II porcine valve recipients 25 years after implant. Eur J Cardiothorac Surg. 2010;38:141–6.PubMedCrossRefGoogle Scholar
  68. 68.
    Myken PS, Bech-Hansen O. A 20-year experience of 1712 patients with the Biocor porcine bioprosthesis. J Thorac Cardiovasc Surg. 2009;137:76–81.PubMedCrossRefGoogle Scholar
  69. 69.
    Lehmann S, Merk DR, Etz CD, et al. Porcine xenograft for aortic, mitral and double valve replacement: long-term results of 2544 consecutive patients. Eur J Cardiothorac Surg. 2016;49:1150–6.PubMedCrossRefGoogle Scholar
  70. 70.
    Anselmi A, Flecher E, Ruggieri VG, et al. Long-term results of the Medtronic Mosaic porcine bioprosthesis in the aortic position. J Thorac Cardiovasc Surg. 2014;147:1884–91.PubMedCrossRefGoogle Scholar
  71. 71.
    Jamieson WR, Burr LH, Miyagishima RT, et al. Carpentier-Edwards supra-annular aortic porcine bioprosthesis: clinical performance over 20 years. J Thorac Cardiovasc Surg. 2005;130:994–1000.PubMedCrossRefGoogle Scholar
  72. 72.
    Investigators I. The Italian study on the mitroflow postoperative results (ISTHMUS): a 20-year, multicentre evaluation of mitroflow pericardial bioprosthesis. Eur J Cardiothorac Surg. 2011;39:18–26; discussion 26.CrossRefGoogle Scholar
  73. 73.
    Yankah CA, Pasic M, Musci M, et al. Aortic valve replacement with the mitroflow pericardial bioprosthesis: durability results up to 21 years. J Thorac Cardiovasc Surg. 2008;136:688–96.PubMedCrossRefGoogle Scholar
  74. 74.
    Senage T, Le Tourneau T, Foucher Y, et al. Early structural valve deterioration of mitroflow aortic bioprosthesis: mode, incidence, and impact on outcome in a large cohort of patients. Circulation. 2014;130:2012–20.PubMedCrossRefGoogle Scholar
  75. 75.
    Anantha Narayanan M, Suri RM, Ugur M, et al. Predictors of survival and modes of failure after mitroflow aortic valve replacement in 1,003 adults. Ann Thorac Surg. 2015;100:560–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Piccardo A, Blossier JD, Le Guyader A, et al. Fate of aortic bioprostheses: an 18-year experience. J Thorac Cardiovasc Surg. 2016;151:754–61 e1.PubMedCrossRefGoogle Scholar
  77. 77.
    Aupart MR, Mirza A, Meurisse YA, et al. Perimount pericardial bioprosthesis for aortic calcified stenosis: 18-year experience with 1133 patients. J Heart Valve Dis. 2006;15:768–75; discussion 775–6.PubMedGoogle Scholar
  78. 78.
    Bourguignon T, Bouquiaux-Stablo AL, Candolfi P, et al. Very long-term outcomes of the Carpentier-Edwards Perimount valve in aortic position. Ann Thorac Surg. 2015;99:831–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Bourguignon T, Lhommet P, El Khoury R, et al. Very long-term outcomes of the Carpentier-Edwards Perimount aortic valve in patients aged 50-65 years. Eur J Cardiothorac Surg. 2016;49:1462–8.PubMedCrossRefGoogle Scholar
  80. 80.
    Johnston DR, Soltesz EG, Vakil N, et al. Long-term durability of bioprosthetic aortic valves: implications from 12,569 implants. Ann Thorac Surg. 2015;99:1239–47.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    McClure RS, Narayanasamy N, Wiegerinck E, et al. Late outcomes for aortic valve replacement with the Carpentier-Edwards pericardial bioprosthesis: up to 17-year follow-up in 1,000 patients. Ann Thorac Surg. 2010;89:1410–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Forcillo J, Pellerin M, Perrault LP, et al. Carpentier-Edwards pericardial valve in the aortic position: 25-years experience. Ann Thorac Surg. 2013;96:486–93.PubMedCrossRefGoogle Scholar
  83. 83.
    Anselmi A, Ruggieri VG, Lelong B, et al. Mid-term durability of the trifecta bioprosthesis for aortic valve replacement. J Thorac Cardiovasc Surg. 2017;153:21–28 e1.PubMedCrossRefGoogle Scholar
  84. 84.
    Lehmann S, Meyer A, Schroeter T, et al. Midterm durability and hemodynamic performance of a third-generation bovine pericardial prosthetic aortic valve: the Leipzig experience. Ann Thorac Surg. 2017;103:1933–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Stanger O, Bleuel I, Gisler F, et al. The freedom Solo pericardial stentless valve: single-center experience, outcomes, and long-term durability. J Thorac Cardiovasc Surg. 2015;150:70–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Stanger O, Bleuel I, Reineke S, et al. Pitfalls and premature failure of the freedom SOLO stentless valve. Eur J Cardiothorac Surg. 2015;48:562–70.PubMedCrossRefGoogle Scholar
  87. 87.
    Sponga S, Barbera MD, Pavoni D, et al. Ten-year results of the freedom Solo stentless heart valve: excellent haemodynamics but progressive valve dysfunction in the long term. Interact Cardiovasc Thorac Surg. 2017;24:663–9.PubMedCrossRefGoogle Scholar
  88. 88.
    Repossini A, Fischlein T, Santarpino G, et al. Pericardial stentless valve for aortic valve replacement: long-term results. Ann Thorac Surg. 2016;102:1956–65.PubMedCrossRefGoogle Scholar
  89. 89.
    Rahimtoola SH. Choice of prosthetic heart valve for adult patients. J Am Coll Cardiol. 2003;41:893–904.PubMedCrossRefGoogle Scholar
  90. 90.
    Takkenberg JJ, Klieverik LM, Bekkers JA, et al. Allografts for aortic valve or root replacement: insights from an 18-year single-center prospective follow-up study. Eur J Cardiothorac Surg. 2007;31:851–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Sadowski J, Kapelak B, Bartus K, et al. Reoperation after fresh homograft replacement: 23 years’ experience with 655 patients. Eur J Cardiothorac Surg. 2003;23:996–1000; discussion 1000–1.PubMedCrossRefGoogle Scholar
  92. 92.
    O’Brien MF, Harrocks S, Stafford EG, et al. The homograft aortic valve: a 29-year, 99.3% follow up of 1,022 valve replacements. J Heart Valve Dis. 2001;10:334–44; discussion 335.PubMedGoogle Scholar
  93. 93.
    Harringer W, Loose R, Guha M, et al. Long term results of aortic valve replacement with allografts—thirteen years follow-up. Cor Europaneum. 1998;7:29–32.Google Scholar
  94. 94.
    Dagenais F, Cartier P, Voisine P, et al. Which biologic valve should we select for the 45- to 65-year-old age group requiring aortic valve replacement? J Thorac Cardiovasc Surg. 2005;129:1041–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Joudinaud TM, Baron F, Raffoul R, et al. Redo aortic root surgery for failure of an aortic homograft is a major technical challenge. Eur J Cardiothorac Surg. 2008;33:989–94.PubMedCrossRefGoogle Scholar
  96. 96.
    Ganapathi AM, Englum BR, Keenan JE, et al. Long-term survival after bovine pericardial versus porcine stented bioprosthetic aortic valve replacement: does valve choice matter? Ann Thorac Surg. 2015;100:550–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Hickey GL, Grant SW, Bridgewater B, et al. A comparison of outcomes between bovine pericardial and porcine valves in 38 040 patients in England and Wales over 10 years. Eur J Cardiothorac Surg. 2015;47:1067–74.PubMedCrossRefGoogle Scholar
  98. 98.
    Colli A, Marchetto G, Salizzoni S, et al. The TRIBECA study: (TRI)fecta (B)ioprosthesis (E)valuation versus (C)arpentier Magna-Ease in (A)ortic position. Eur J Cardiothorac Surg. 2016;49:478–85.PubMedCrossRefGoogle Scholar
  99. 99.
    Fiegl K, Deutsch MA, Rondak IC, et al. Matched comparison of two different biological prostheses for complete supra-annular aortic valve replacement. Thorac Cardiovasc Surg. 2015;63:459–66.PubMedGoogle Scholar
  100. 100.
    Bach DS, Patel HJ, Kolias TJ, et al. Randomized comparison of exercise haemodynamics of freestyle, magna ease and trifecta bioprostheses after aortic valve replacement for severe aortic stenosis. Eur J Cardiothorac Surg. 2016;50:361–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Lengyel M, Horstkotte D, Voller H, et al. Recommendations for the management of prosthetic valve thrombosis. J Heart Valve Dis. 2005;14:567–75.PubMedGoogle Scholar
  102. 102.
    Caceres-Loriga FM. Prosthetic valve thrombosis: is it time for a new consensus conference? Eur J Echocardiogr. 2008;9:413–4.PubMedCrossRefGoogle Scholar
  103. 103.
    Caceres-Loriga FM, Perez-Lopez H, Morlans-Hernandez K, et al. Thrombolysis as first choice therapy in prosthetic heart valve thrombosis. A study of 68 patients. J Thromb Thrombolysis. 2006;21:185–90.PubMedCrossRefGoogle Scholar
  104. 104.
    Durrleman N, Pellerin M, Bouchard D, et al. Prosthetic valve thrombosis: twenty-year experience at the Montreal Heart Institute. J Thorac Cardiovasc Surg. 2004;127:1388–92.PubMedCrossRefGoogle Scholar
  105. 105.
    Roudaut R, Roques X, Lafitte S, et al. Surgery for prosthetic valve obstruction. A single center study of 136 patients. Eur J Cardiothorac Surg. 2003;24:868–72.PubMedCrossRefGoogle Scholar
  106. 106.
    Das M, Twomey D, Al Khaddour A, et al. Is thrombolysis or surgery the best option for acute prosthetic valve thrombosis? Interact Cardiovasc Thorac Surg. 2007;6:806–11.PubMedCrossRefGoogle Scholar
  107. 107.
    Lengyel M, Fuster V, Keltai M, et al. Guidelines for management of left-sided prosthetic valve thrombosis: a role for thrombolytic therapy. Consensus Conference on Prosthetic Valve Thrombosis. J Am Coll Cardiol. 1997;30:1521–6.PubMedCrossRefGoogle Scholar
  108. 108.
    Roudaut R, Lafitte S, Roudaut MF, et al. Fibrinolysis of mechanical prosthetic valve thrombosis: a single-center study of 127 cases. J Am Coll Cardiol. 2003;41:653–8.PubMedCrossRefGoogle Scholar
  109. 109.
    Tong AT, Roudaut R, Ozkan M, et al. Transesophageal echocardiography improves risk assessment of thrombolysis of prosthetic valve thrombosis: results of the international PRO-TEE registry. J Am Coll Cardiol. 2004;43:77–84.PubMedCrossRefGoogle Scholar
  110. 110.
    Vahanian A, Baumgartner H, Bax J, et al. Guidelines on the Management of Valvular Heart Disease: the Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology. Eur Heart J. 2007;28:230–68.PubMedGoogle Scholar
  111. 111.
    Dominik J, Zacek P. Thrombosis of implanted heart valves. In: Dominik J, Zacek P, editors. Heart valve surgery. Heidelberg: Springer; 2010. p. 371–83.CrossRefGoogle Scholar
  112. 112.
    Cao C, Ang SC, Indraratna P, et al. Systematic review and meta-analysis of transcatheter aortic valve implantation versus surgical aortic valve replacement for severe aortic stenosis. Ann Cardiothorac Surg. 2013;2:10–23.PubMedPubMedCentralGoogle Scholar
  113. 113.
    O’Sullivan KE, Gough A, Segurado R, et al. Is valve choice a significant determinant of paravalular leak post-transcatheter aortic valve implantation? A systematic review and meta-analysis. Eur J Cardiothorac Surg. 2014;45:826–33.PubMedCrossRefGoogle Scholar
  114. 114.
    Habib G, Lancellotti P, Antunes MJ, et al. 2015 ESC Guidelines for the Management of Infective Endocarditis: the Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J. 2015;36:3075–128.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Edwards MB, Ratnatunga CP, Dore CJ, et al. Thirty-day mortality and long-term survival following surgery for prosthetic endocarditis: a study from the UK heart valve registry. Eur J Cardiothorac Surg. 1998;14:156–64.PubMedCrossRefGoogle Scholar
  116. 116.
    Brennan JM, Edwards FH, Zhao Y, et al. Long-term safety and effectiveness of mechanical versus biologic aortic valve prostheses in older patients: results from the Society of Thoracic Surgeons Adult Cardiac Surgery National Database. Circulation. 2013;127:1647–55.PubMedCrossRefGoogle Scholar
  117. 117.
    Tornos P. Infective endocarditis: a serious and rare condition that needs to be handled in experienced hospitals. Rev Esp Cardiol (Engl Ed). 2005;58:1145–7.CrossRefGoogle Scholar
  118. 118.
    Edlin P, Westling K, Sartipy U. Long-term survival after operations for native and prosthetic valve endocarditis. Ann Thorac Surg. 2013;95:1551–6.PubMedCrossRefGoogle Scholar
  119. 119.
    Nishimura RA, Carabello BA, Faxon DP, et al. ACC/AHA 2008 guideline update on valvular heart disease: focused update on infective endocarditis: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines: endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2008;118:887–96.PubMedCrossRefGoogle Scholar
  120. 120.
    Pelouch R. Profylaxe infekční endokarditidy. Interv Akut Kardiol. 2011;10:170–4.Google Scholar
  121. 121.
    Wyss TR, Bigler M, Stalder M, et al. Absence of prosthesis-patient mismatch with the new generation of Edwards stented aortic bioprosthesis. Interact Cardiovasc Thorac Surg. 2010;10:884–7; discussion 887–8.PubMedCrossRefGoogle Scholar
  122. 122.
    Šantavý P, Benčat M, Troubil M, et al. Naše zkušenosti s aortálními bioprotézami. Cor Vasa. 2007;49:245–9.Google Scholar
  123. 123.
    Blais C, Dumesnil JG, Baillot R, et al. Impact of valve prosthesis-patient mismatch on short-term mortality after aortic valve replacement. Circulation. 2003;108:983–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Fuster RG, Montero Argudo JA, Albarova OG, et al. Patient-prosthesis mismatch in aortic valve replacement: really tolerable? Eur J Cardiothorac Surg. 2005;27:441–9; discussion 449.PubMedCrossRefGoogle Scholar
  125. 125.
    Honda K, Okamura Y. Prosthesis-patient mismatch in aortic stenosis. Gen Thorac Cardiovasc Surg. 2014;62:78–86.PubMedCrossRefGoogle Scholar
  126. 126.
    Howell NJ, Keogh BE, Ray D, et al. Patient-prosthesis mismatch in patients with aortic stenosis undergoing isolated aortic valve replacement does not affect survival. Ann Thorac Surg. 2010;89:60–4.PubMedCrossRefGoogle Scholar
  127. 127.
    Moon MR, Lawton JS, Moazami N, et al. POINT: prosthesis-patient mismatch does not affect survival for patients greater than 70 years of age undergoing bioprosthetic aortic valve replacement. J Thorac Cardiovasc Surg. 2009;137:278–83.PubMedCrossRefGoogle Scholar
  128. 128.
    Tasca G, Brunelli F, Cirillo M, et al. Impact of valve prosthesis-patient mismatch on left ventricular mass regression following aortic valve replacement. Ann Thorac Surg. 2005;79:505–10.PubMedCrossRefGoogle Scholar
  129. 129.
    Vicchio M, Della Corte A, De Santo LS, et al. Prosthesis-patient mismatch in the elderly: survival, ventricular mass regression, and quality of life. Ann Thorac Surg. 2008;86:1791–7.PubMedCrossRefGoogle Scholar
  130. 130.
    Dominik J. Patient-prosthesis mismatch. In: Čerbák R, editor. Nejčastější chlopenní vady (The commonest heart valve diseases). Prague: Galén; 2007. p. 111–9.Google Scholar
  131. 131.
    Del Rizzo DF, Abdoh A, Cartier P, et al. Factors affecting left ventricular mass regression after aortic valve replacement with stentless valves. Semin Thorac Cardiovasc Surg. 1999;11:114–20.PubMedGoogle Scholar
  132. 132.
    Pibarot P, Dumesnil JG. Patient-prosthesis mismatch and the predictive use of indexed effective orifice area: is it relevant? Card Surg Today. 2003;1:43–51.Google Scholar
  133. 133.
    Cuerpo G, Vallejo JL, Rodriguez-Abella RH et al. Valvular-prosthesis mismatch: clinical impact. In: The European Society for Cardiovascular Surgery 54th International Congrees, 2005. Athens: Interact Cardiovasc Thorac Surg. p. 19.Google Scholar
  134. 134.
    Medalion B, Lytle BW, McCarthy PM, et al. Aortic valve replacement for octogenarians: are small valves bad? Ann Thorac Surg. 1998;66:699–705; discussion 705–6.PubMedCrossRefGoogle Scholar
  135. 135.
    Roscitano A, Benedetto U, Sciangula A, et al. Indexed effective orifice area after mechanical aortic valve replacement does not affect left ventricular mass regression in elderly. Eur J Cardiothorac Surg. 2006;29:139–43.PubMedCrossRefGoogle Scholar
  136. 136.
    Sawant D, Singh AK, Feng WC, et al. Nineteen-millimeter aortic St. Jude Medical heart valve prosthesis: up to sixteen years’ follow-up. Ann Thorac Surg. 1997;63:964–70.PubMedCrossRefGoogle Scholar
  137. 137.
    Sawant D, Singh AK, Feng WC, et al. St. Jude Medical cardiac valves in small aortic roots: follow-up to sixteen years. J Thorac Cardiovasc Surg. 1997;113:499–509.PubMedCrossRefGoogle Scholar
  138. 138.
    Rao V, Jamieson WR, Ivanov J, et al. Prosthesis-patient mismatch affects survival after aortic valve replacement. Circulation. 2000;102:III5–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Hanayama N, Christakis GT, Mallidi HR, et al. Patient prosthesis mismatch is rare after aortic valve replacement: valve size may be irrelevant. Ann Thorac Surg. 2002;73:1822–9; discussion 1829.PubMedCrossRefGoogle Scholar
  140. 140.
    Banerjee A, Akhter M, Mathew SG. The 19mm aortic valve prosthesis: does size really matter? Cor Europaeum. 2000;8:107–10.Google Scholar
  141. 141.
    Iosifescu AG, Moldovan H, Iliescu VA. Aortic prosthesis-patient mismatch strongly affects early results of double valve replacement. J Heart Valve Dis. 2014;23:149–57.PubMedGoogle Scholar
  142. 142.
    Penta de Peppo A, Zeitani J, Nardi P, et al. Small “functional” size after mechanical aortic valve replacement: no risk in young to middle-age patients. Ann Thorac Surg. 2005;79:1915–20.PubMedCrossRefGoogle Scholar
  143. 143.
    Head SJ, Mokhles MM, Osnabrugge RL, et al. The impact of prosthesis-patient mismatch on long-term survival after aortic valve replacement: a systematic review and meta-analysis of 34 observational studies comprising 27 186 patients with 133 141 patient-years. Eur Heart J. 2012;33:1518–29.PubMedCrossRefGoogle Scholar
  144. 144.
    Mannacio V, De Amicis V, Vosa C. Prosthesis-patient mismatch after aortic valve replacement: is it time for a redefinition? Ann Thorac Surg. 2014;97:1482.PubMedCrossRefGoogle Scholar
  145. 145.
    Puskas J, Gerdisch M, Nichols D, et al. Reduced anticoagulation after mechanical aortic valve replacement: interim results from the prospective randomized on-X valve anticoagulation clinical trial randomized Food and Drug Administration investigational device exemption trial. J Thorac Cardiovasc Surg. 2014;147:1202–10; discussion 1210–1.PubMedCrossRefGoogle Scholar
  146. 146.
    Cumberworth A, Mabvuure NT, Hallam MJ, et al. Is home monitoring of international normalised ratio safer than clinic-based monitoring? Interact Cardiovasc Thorac Surg. 2013;16:198–201.PubMedCrossRefGoogle Scholar
  147. 147.
    Edmunds LH Jr, Cohn LH, Weisel RD. Guidelines for reporting morbidity and mortality after cardiac valvular operations. J Thorac Cardiovasc Surg. 1988;96:351–3.PubMedGoogle Scholar
  148. 148.
    Akins CW, Miller DC, Turina MI, et al. Guidelines for reporting mortality and morbidity after cardiac valve interventions. Eur J Cardiothorac Surg. 2008;33:523–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Clinical comparison of FDA approval studies for heart valves. Austin: On-X Life Technologies Inc.; 2010.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Cardiac SurgeryCharles University, Faculty of Medicine in Hradec Králové, University Hospital Hradec KrálovéHradec KrálovéCzech Republic

Personalised recommendations