Anti-Diabetic Effect of Fruits on Different Animal Model System

  • Papitha R.
  • Kaviyarasi Renu
  • Immanuel Selvaraj C.Email author
  • Abilash V. G.Email author


Fruits have important bioactive and dietary components ingredients of our everyday life that plays a major role to cure diseases. Inadequate intake of antioxidant and improved reactive oxygen species is associated with diabetes mellitus. Many of the components were proved to be succeeding to treat several chronic diseases like cancer, cardiovascular, obesity, and diabetes. Fruits which have listed here have dietary fiber which reduces diabetes and cardiac and other diseases also. Fruits like Momordica cymbalaria, Pongamia pinnata, Diospyros peregrina, Xylopia aethiopica, Ficus deltoidea, Prunus avium, Trapa natans, Terminalia pallida and Punica granatum. The fruit aqueous extract of Momordica cymbalaria exposed significant antihyperlipidemic as well as antihyperglycemic administered orally at 0.5 g/kg for six weeks by alloxan-induced diabetic rats. In Pongamia pinnata fruits, compounds called pongamal and karanjin was administered using streptozotocin diabetic rats which decreases the blood glucose level at the dosage of 50 mg/kg for 11.7 and 12.8%, 20.7% at 100 mg/kg individually post oral administration of six hours. An edible fruit of Diospyros peregrina streptozotocin-nicotinamide induced type 2 diabetes was achieved in aqueous extract decreases the blood glucose level at the dosage of 50 and 100 mg/kg body weight for twenty-eight days. Xylopia aethiopica acetone fraction of ethanol extract was investigated for type 2 diabetes. Streptozotocin was induced by single intraperitoneal injection and animals were treated orally at the dosage of 150 or 300 mg/kg body weight for 4 weeks reduces blood glucose level. Ficus deltoidea fruit was carried out with crude aqueous extract and fractions were estimated for sugars, phenol, protein and flavonoid content. Antidiabetic activity was carried out in water fraction using alpha-glucosidase assay reveals the highest amount of protein 73.33 ± 4.99 μg/mg. Ethanol extract (200 mg/kg) of Prunus avium fruit was administered orally by single intraperitoneal injection using alloxan induced (120 mg/kg) rats which decrease blood glucose level. Trapa natans fruit peel of methanol extract was evaluated for antidiabetic activity by streptozotocin (100 and 200 mg/ kg body weight) induced a diabetic rat which decreases blood glucose level. Terminalia pallida ethanol fruit extract was given intraperitoneal injection using alloxan (150 mg/kg body weight) monohydrate induced for diabetic rats model. Blood glucose levels were significant to at the dosage of 0.5 g/kg body weight. The aqueous ethanol extract of Punica granatum juice sugar for diabetic rats for ten days. Significantly reduces the blood sugar level, total peroxide level, and peritoneal macrophages. The aim of this book chapter reveals that fruit is considered as one of the important dietary ingredients. It has a vital significant role to control and to treat type 1 and type 2 diabetes mellitus. Henceforth, encouraging adherence of mentioned fruits was considerable significance to public health.


Anti-diabetic activity Terminalia pallida Punica grantum Extraction Medicinal plants 



The authors thank to Vellore Institute of Technology, Vellore, Tamilnadu, India for supporting this work. The author Papitha R, Kaviyarasi Renu is grateful to Vellore Institute of Technology for providing the financial assistance during this tenure. The authors wish to greatly acknowledge the editor and reviewers for the suggestions and critical evaluation of the manuscript.


  1. Abdullah Z, Hussain K, Zhari I, Rasadah MA, Mazura P, Jamaludin F, Sahdan R (2009) Evaluation of extracts of leaf of three Ficus deltoidea varieties for antioxidant activities and secondary metabolites. Pharmacogn Res 1:216Google Scholar
  2. Adam Z, Hamid M, Ismail A, Khamis S (2007) Effect of Ficus deltoidea aqueous extract on blood glucose level in normal and mild diabetic rats. Malaysian. J Health Sci 5:9–16Google Scholar
  3. Adam Z, Ismail A, Khamis S, Mokhtar MHM, Hamid M (2011) Antihyperglycemic activity of F. deltoidea ethanolic extract in normal rats. Sains Malaysiana 40:489–495Google Scholar
  4. Adam Z, Khamis S, Ismail A, Hamid M (2012) Ficus deltoidea: a potential alternative medicine for diabetes mellitus. Evid Based Complement Alternat Med 2012:1CrossRefGoogle Scholar
  5. Allen O, Allen E (1981) Leguminosae. The University of Wisconsin Press, p 812Google Scholar
  6. Almind K, Kahn CR (2004) Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes 53:3274–3285PubMedCrossRefGoogle Scholar
  7. Al-Said F, La O, Al-Yahyai R (2009) Physico-chemical and textural quality attributes of pomegranate cultivars (Punica granatum L.) grown in the Sultanate of Oman. J Food Eng 90:129–134CrossRefGoogle Scholar
  8. Aminudin N, Sin CY, Chee ES, Nee KI, Renxin L (1970) Blood glucose lowering effect of Ficus deltoidea aqueous extract. Malays J Sci 26Google Scholar
  9. Anjaria J, Parabia M, Bhatt G, Khamar R (2002a) Nature heals, a glossary of selected indigenous medicinal plants of India. SRISTI Innovations, AhmedabadGoogle Scholar
  10. Anjaria J, Parabia M, Dwivedi S (2002b) Ethnovet heritage–Indian Ethnoveterinary medicine an overview. Pathik Enterprise, AhmedabadGoogle Scholar
  11. Anupama N, Madhumitha G, Rajesh KS (2014) Role of dried fruits of as anti-inflammatory agents and the analysis of phytochemical constituents by GC-MS. Biomed Res Int 2014:1–6Google Scholar
  12. Asif M (2011) The role of fruits, vegetables, and spices in diabetes. Int J Nutr Pharmacol Neurol Dis 1:27CrossRefGoogle Scholar
  13. Association AD (2004) American Diabetes Association: gestational diabetes mellitus (position statement). Diabetes Care 27:S88–S90CrossRefGoogle Scholar
  14. Atkinson MA, Leiter EH (1999) The NOD mouse model of type 1 diabetes: as good as it gets? Nat Med 5:601PubMedCrossRefGoogle Scholar
  15. Aviram M, Dornfeld L, Kaplan M, Coleman R, Gaitini D, Nitecki S, Hofman A, Rosenblat M, Volkova N, Presser D (2002) Pomegranate juice flavonoids inhibit low-density lipoprotein oxidation and cardiovascular diseases: studies in atherosclerotic mice and in humans. Drugs Exp Clin Res 28:49–62PubMedGoogle Scholar
  16. Babio N, Bulló M, Salas-Salvadó J (2009) Mediterranean diet and metabolic syndrome: the evidence. Public Health Nutr 12:1607–1617PubMedCrossRefGoogle Scholar
  17. Baliga MS, Bhat HP, Pai RJ, Boloor R, Palatty PL (2011) The chemistry and medicinal uses of the underutilized Indian fruit tree Garcinia Indica Choisy (kokum): a review. Food Res Int 44:1790–1799CrossRefGoogle Scholar
  18. Bansal R, Ahmad N, Kidwai JR (1980) Alloxan-glucose interaction: effect on incorporation of 14 C-leucine into pancreatic islets of rat. Acta Diabetol 17:135–143CrossRefGoogle Scholar
  19. Barker JM (2006) Type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J Clin Endocrinol Metabol 91:1210–1217CrossRefGoogle Scholar
  20. Berg C (2003) Flora Malesiana precursor for the treatment of Moraceae 3: Ficus subgenus Ficus. Blumea-Biodiversity Evol Biogeo Plants 48:529–550CrossRefGoogle Scholar
  21. Bödvarsdóttir T, Hove K, Gotfredsen C, Pridal L, Vaag A, Karlsen A, Petersen J (2010) Treatment with a proton pump inhibitor improves glycaemic control in Psammomys Obesus, a model of type 2 diabetes. Diabetologia 53:2220–2223PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bonnevie-Nielsen V, Steffes MW, Lernmark Å (1981) A major loss in islet mass and B-cell function precedes hyperglycemia in mice given multiple low doses of streptozotocin. Diabetes 30:424–429PubMedCrossRefGoogle Scholar
  23. Buck DW, Jin DP, Geringer M, Hong SJ, Galiano RD, Mustoe TA (2011) The TallyHo polygenic mouse model of diabetes: implications in wound healing. Plast Reconstr Surg 128:427e–437ePubMedCrossRefGoogle Scholar
  24. Cefalu WT (2006) Animal models of type 2 diabetes: clinical presentation and pathophysiological relevance to the human condition. ILAR J 47:186–198PubMedCrossRefGoogle Scholar
  25. Ceylan-Isik AF, Fliethman RM, Wold LE, Ren J (2008) Herbal and traditional Chinese medicine for the treatment of cardiovascular complications in diabetes mellitus. Curr Diabetes Rev 4:320–328PubMedCrossRefGoogle Scholar
  26. Chakraborty G, Thumpayil S, Lafontant DE, Woubneh W, Toney JH (2009) Age dependence of glucose tolerance in adult KK-ay mice, a model of non-insulin dependent diabetes mellitus. Lab Anim 38:364CrossRefGoogle Scholar
  27. Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E (2009) The use of animal models in the study of diabetes mellitus. In Vivo 23:245–258PubMedGoogle Scholar
  28. Chehab FF, Lim ME, Lu R (1996) Correction of the sterility defect in homozygous obese female mice by treatment with the human recombinant leptin. Nat Genet 12:318–320PubMedCrossRefGoogle Scholar
  29. Chen H, Charlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, More KJ, Breitbart RE (1996) Evidence that the diabetes gene encodes the leptin receptor: identification of a mutation in the leptin receptor gene in db/db mice. Cell 84:491–495PubMedCrossRefGoogle Scholar
  30. Chen H, Zheng C, Zhang X, Li J, Li J, Zheng L, Huang K (2011) Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides 32:1634–1639PubMedCrossRefGoogle Scholar
  31. Cho YR, Kim HJ, Park SY, Ko HJ, Hong EG, Higashimori T, Zhang Z, Jung DY, Ola MS, LaNoue KF (2007) Hyperglycemia, maturity-onset obesity, and insulin resistance in NONcNZO10/LtJ males, a new mouse model of type 2 diabetes. Am J Physiol Endocrinol Metab 293:E327–E336PubMedCrossRefGoogle Scholar
  32. Choo C, Sulong N, Man F, Wong T (2012) Vitexin and isovitexin from the leaves of Ficus Deltoidea with in-vivo α-glucosidase inhibition. J Ethnopharmacol 142:776–781PubMedCrossRefGoogle Scholar
  33. Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants. C SIR, New DelhiGoogle Scholar
  34. Claridge M, Wilson M (1982) Insect herbivore guilds and species—area relationships: leafminers on British trees. Ecol Entomol 7:19–30CrossRefGoogle Scholar
  35. Clee SM, Attie AD (2007) The genetic landscape of type 2 diabetes in mice. Endocr Rev 28:48–83PubMedCrossRefGoogle Scholar
  36. Coleman DL (1978) Obese and diabetes: two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia 14:141–148PubMedCrossRefGoogle Scholar
  37. Danaei G, Finucane MM, Lu Y, Singh GM, Cowan MJ, Paciorek CJ, Lin JK, Farzadfar F, Khang YH, Stevens GA (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet 378:31–40PubMedCrossRefGoogle Scholar
  38. Das AK, Mandal SC, Banerjee SK, Sinha S, Saha B, Pal M (2001) Studies on the hypoglycaemic activity of Punica granatum seed in streptozotocin induced diabetic rats. Phytother Res 15:628–629PubMedCrossRefGoogle Scholar
  39. Databases GT (2009) USDA, ARS, National genetic resources program. Germplasm Resources Information Network (GRIN)[online database], National Germplasm Resources Laboratory, Beltsville, MarylandGoogle Scholar
  40. Deeds M, Anderson J, Armstrong A, Gastineau D, Hiddinga H, Jahangir A, Eberhardt NL, Kudva YC (2011) Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models. Lab Anim 45:131–140PubMedPubMedCentralCrossRefGoogle Scholar
  41. Diallo A, Traore MS, Keita SM, Balde MA, Keita A, Camara M, Van Miert S, Pieters L, Balde AM (2012) Management of diabetes in Guinean traditional medicine: an ethnobotanical investigation in the coastal lowlands. J Ethnopharmacol 144:353–361PubMedCrossRefGoogle Scholar
  42. Dièye AM, Sarr A, Diop SN, Ndiaye M, Sy GY, Diarra M, Faye B (2008) Medicinal plants and the treatment of diabetes in Senegal: survey with patients. Fundam Clin Pharmacol 22:211–216PubMedCrossRefGoogle Scholar
  43. Drel VR, Pacher P, Stavniichuk R, Xu W, Zhang J, Kuchmerovska TM, Slusher B, Obrosova IG (2011) Poly (ADP-ribose) polymerase inhibition counteracts renal hypertrophy and multiple manifestations of peripheral neuropathy in diabetic Akita mice. Int J Mol Med 28:629–635PubMedPubMedCentralGoogle Scholar
  44. Dufrane D, Van Steenberghe M, Guiot Y, Goebbels RM, Saliez A, Gianello P (2006) Streptozotocin-induced diabetes in large animals (pigs/primates): role of GLUT2 transporter and β-cell plasticity. Transplantation 81:36–45PubMedCrossRefGoogle Scholar
  45. Ellerman KE, Richards CA, Guberski DL, Shek WR, Like AA (1996) Kilham rat virus triggers T-cell–dependent autoimmune diabetes in multiple strains of rat. Diabetes 45:557–562PubMedCrossRefGoogle Scholar
  46. Esekhiagbe M, Agatemor MMU, Agatemor C (2009) Phenolic content and antimicrobial potentials of Xylopia aethiopica and Myristica argentea. Maced J Chem Chem Eng 28:159–162Google Scholar
  47. Etuk E (2010) Animals models for studying diabetes mellitus. Agric Biol J N Am 1:130–134Google Scholar
  48. Fatimah Z, Mahmood A, Hapipah M, Suzita M, Salmah I (2009) Anti-ulcerogenic activity of aqueous extract of Ficus deltoidea against ethanol-induced gastric mucosal injury in rats. Res J Med Sci 3:42–46Google Scholar
  49. Fernandes NP, Lagishetty CV, Panda VS, Naik SR (2007) An experimental evaluation of the antidiabetic and antilipidemic properties of a standardized Momordica Charantia fruit extract. BMC Complement Altern Med 7(29)Google Scholar
  50. Fernando MM, Stevens CR, Walsh EC, De Jager PL, Goyette P, Plenge RM, Vyse TJ, Rioux JD (2008) Defining the role of the MHC in autoimmunity: a review and pooled analysis. PLoS Genet 4:e1000024PubMedPubMedCentralCrossRefGoogle Scholar
  51. Foltran F, Verduci E, Ghidina M, Campoy C, Jany KD, Widhalm K, Biasucci G, Vögele C, Halpern GM, Gregori D (2010) Nutritional profiles in a public health perspective: a critical review. J Int Med Res 38:318–385PubMedCrossRefGoogle Scholar
  52. Fowsiya J, Madhumitha G (2017) Preliminary phytochemical analysis, antioxidant and cytotoxicity test of Carissa edulis Vahl dried fruits. IOP Conf. Series: Materials Science and Engineering. 263(2017):022018. CrossRefGoogle Scholar
  53. Freiesleben SH, Soelberg J, Jäger AK (2015) Medicinal plants used as excipients in the history in Ghanaian herbal medicine. J Ethnopharmacol 174:561–568PubMedCrossRefGoogle Scholar
  54. Gault VA, Kerr BD, Harriott P, Flatt PR (2011) Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with type 2 diabetes and obesity. Clin Sci 121:107–117PubMedCrossRefGoogle Scholar
  55. Gil MI, Tomás-Barberán FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589PubMedCrossRefGoogle Scholar
  56. Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119:85–90PubMedCrossRefGoogle Scholar
  57. Gupta M, Mazumder U, Manikandan L, Bhattacharya S, Senthilkumar G, Suresh R (2005) Anti-ulcer activity of ethanol extract of Terminaliapallida Brandis. In Swiss albino rats. J Ethnopharmacol 97:405–408PubMedCrossRefGoogle Scholar
  58. Hakiman M, Maziah M (2009) Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus Deltoidea accessions. J Med Plants Res 3:120–131Google Scholar
  59. Hanafusa T, Ji M, Nakajima H, Tomita K, Kuwajima M, Matsuzawa Y, Tarui S (1994) The NOD mouse. Diabetes Res Clin Pract 24:S307–S311PubMedCrossRefGoogle Scholar
  60. Harada N, Onaka M, Sakamoto S, Niwa Y, Nakaya Y (1999) Cilnidipine improves insulin sensitivity in the Otsuka long-Evans Tokushima fatty rat, a model of spontaneous NIDDM. Cardiovasc. Drugs Ther 13:519–523Google Scholar
  61. Haskell BD, Flurkey K, Duffy TM, Sargent EE, Leiter EH (2002) The diabetes-prone NZO/HlLt strain. I. Immunophenotypic comparison to the related NZB/BlNJ and NZW/LacJ strains. Lab Investig 82:833PubMedCrossRefGoogle Scholar
  62. Hemalatha K, Madhumitha G, Kajbafvala A, Anupama N, Sompalle R, Roopan SM (2013) Function of nanocatalyst in chemistry of organic compounds revolution: an overview. J Nanomater 2013:1–23Google Scholar
  63. Hemalatha K, Madhumitha G, Vasavi CS, Munusami P (2015) 2,3-Dihydroquinazolin-4(1H)-ones: visible light mediated synthesis, solvatochromism and biological activity. J Photochem  Photobiol B: Biol 143:139–147CrossRefGoogle Scholar
  64. Höppener JW, Jansz HS, Oosterwijk C, Van Hulst KL, Lips CJ, Verbeek JS, Capel PJ, de Koning EJ, Clark A (1994) Molecular physiology of the islet amyloid polypeptide (IAPP)/amylin gene in man, rat, and transgenic mice. J Cell Biochem 55:39–53PubMedCrossRefGoogle Scholar
  65. Hyttinen V, Kaprio J, Kinnunen L, Koskenvuo M, Tuomilehto J (2003) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs. Diabetes 52:1052–1055PubMedCrossRefGoogle Scholar
  66. Ikeda H (1994) KK mouse. Diabetes Res Clin Pract 24:S313–S316PubMedCrossRefGoogle Scholar
  67. Im Walde SS, Dohle C, Schott-Ohly P, Gleichmann H (2002) Molecular target structures in alloxan-induced diabetes in mice. Life Sci 71:1681–1694PubMedCrossRefGoogle Scholar
  68. Iwu MM (2014) Handbook of African medicinal plants. CRC press, Boca RatonCrossRefGoogle Scholar
  69. Jafri M, Aslam M, Javed K, Singh S (2000) Effect of Punica granatum Linn.(flowers) on blood glucose level in normal and alloxan-induced diabetic rats. J Ethnopharmacol 70:309–314PubMedCrossRefGoogle Scholar
  70. Jaidane H, Sane F, Gharbi J, Aouni M, Romond M, Hober D (2009) Coxsackievirus B4 and type 1 diabetes pathogenesis: contribution of animal models. Diabetes Metab Res Rev 25:591–603PubMedCrossRefGoogle Scholar
  71. Jain N, Yadava R (1994) Peregrinol, a lupane type triterpene from the fruits of Diospyros peregrina. Phytochemistry 35:1070–1072CrossRefGoogle Scholar
  72. Jain N, Yadava RN (1997) Furano-(2″, 3″, 7, 8)-3', 5'-Dimethoxy-5-Hydroxyflavone: a new Furanoflavone from the fruits of Diospyros peregrina Gurka. Asian J Chem 9:442Google Scholar
  73. Jederström G, Nordin A, Sjöholm I, Andersson A (2005) Blood glucose-lowering activity of a hyaluronan–insulin complex after oral administration to rats with diabetes. Diabetes Technol Ther 7:948–957PubMedCrossRefGoogle Scholar
  74. Johanningsmeier SD, Harris GK (2011) Pomegranate as a functional food and nutraceutical source. Annu Rev Food Sci Technol 2:181–201PubMedCrossRefGoogle Scholar
  75. Jörns A, Günther A, Hedrich HJ, Wedekind D, Tiedge M, Lenzen S (2005) Immune cell infiltration, cytokine expression, and β-cell apoptosis during the development of type 1 diabetes in the spontaneously diabetic LEW. 1AR1/Ztm-iddm rat. Diabetes 54:2041–2052PubMedCrossRefGoogle Scholar
  76. Joshi VK, Joshi A, Dhiman KS (2017) The Ayurvedic pharmacopoeia of India, development and perspectives. J Ethnopharmacol 197:32–38PubMedCrossRefGoogle Scholar
  77. Jun HS, Yoon JW (2004) A new look at viruses in type 1 diabetes. ILAR J 45:349–374CrossRefGoogle Scholar
  78. Jurenka J (2008) Therapeutic applications of pomegranate (Punica Granatum L.): a review. Altern Med Rev 13:128PubMedGoogle Scholar
  79. Karou SD, Tchacondo T, Djikpo Tchibozo MA, Abdoul-Rahaman S, Anani K, Koudouvo K, Batawila K, Agbonon A, Simpore J, de Souza C (2011) Ethnobotanical study of medicinal plants used in the management of diabetes mellitus and hypertension in the central region of Togo. Pharm Biol 49:1286–1297PubMedCrossRefGoogle Scholar
  80. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T (1991) New inbred strain of long-Evans Tokushima lean rats with IDDM without lymphopenia. Diabetes 40:1375–1381PubMedCrossRefGoogle Scholar
  81. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications: Otsuka long-Evans Tokushima fatty (OLETF) strain. Diabetes 41:1422–1428PubMedCrossRefGoogle Scholar
  82. Kawano K, Hirashima T, Mori S, Natori T (1994) OLETF (Otsuka long-Evans Tokushima fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 24:S317–S320PubMedCrossRefGoogle Scholar
  83. Kim HR, Rho HW, Park BH, Park JW, Kim JS, Kim UH, Chung MY (1994) Role of Ca2+ in alloxan-induced pancreatic β-cell damage. Biochim Biophys Acta Mol Basis Dis 1227:87–91CrossRefGoogle Scholar
  84. Kim C, Newton KM, Knopp RH (2002) Gestational diabetes and the incidence of type 2 diabetes. Diabetes Care 25:1862–1868PubMedCrossRefGoogle Scholar
  85. Kim JH, Stewart TP, Zhang W, Kim HY, Nishina PM, Naggert JK (2005) Type 2 diabetes mouse model TallyHo carries an obesity gene on chromosome 6 that exaggerates dietary obesity. Physiol Genomics 22:171–181PubMedCrossRefGoogle Scholar
  86. Kim JS, JB J, Choi CW, Kim SC (2006) Hypoglycemic and antihyperlipidemic effect of four Korean medicinal plants in alloxan induced diabetic rats. Am J Biochem Biotech 2:154–160CrossRefGoogle Scholar
  87. King AJ (2012) The use of animal models in diabetes research. Br J Pharmacol 166:877–894PubMedPubMedCentralCrossRefGoogle Scholar
  88. Kirtikar K, Basu B (1975) Indian medicinal plants, vol 2. Bishen Singh Mahandra Pal Singh, Dehra Dun, pp 2327–2328Google Scholar
  89. Kirtikar K, Basu B (1999) Indian medicinal plants, vol 3. International Book Distributors, Dehradun, pp 2262–2263Google Scholar
  90. Kluth O, Mirhashemi F, Scherneck S, Kaiser D, Kluge R, Neschen S, Joost HG, Schürmann A (2011) Dissociation of lipotoxicity and glucotoxicity in a mouse model of obesity associated diabetes: role of forkhead box O1 (FOXO1) in glucose-induced beta cell failure. Diabetologia 54:605–616PubMedCrossRefGoogle Scholar
  91. Komeda K, Noda M, Terao K, Kuzuya N, Kanazawa M, Kanazawa Y (1998) Establishment of two substrains, diabetes-prone and non-diabetic, from long-Evans Tokushima lean (LETL) rats. Endocr J 45:737–744PubMedCrossRefGoogle Scholar
  92. Konczak I, Zhang W (2004) Anthocyanins—more than nature’s colours. Biomed Res Int 2004:239–240Google Scholar
  93. Kosegawa I, Katayama S, Kikuchi C, Kashiwabara H, Negishi K, Ishii J, Inukai K, Oka Y (1996) Metformin decreases blood pressure and obesity in OLETF rats via improvement of insulin resistance. Hypertens Res 19:37–41PubMedCrossRefGoogle Scholar
  94. Krueger DA (2012) Composition of pomegranate juice. J AOAC Int 95:163–168PubMedCrossRefGoogle Scholar
  95. Kuete V, Krusche B, Youns M, Voukeng I, Fankam AG, Tankeo S, Lacmata S, Efferth T (2011) Cytotoxicity of some Cameroonian spices and selected medicinal plant extracts. J Ethnopharmacol 134:803–812PubMedCrossRefGoogle Scholar
  96. Kuete V, Sandjo LP, Wiench B, Efferth T (2013) Cytotoxicity and modes of action of four Cameroonian dietary spices ethno-medically used to treat cancers: Echinops giganteus, Xylopia aethiopica, Imperata cylindrica and Piper capense. J Ethnopharmacol 149:245–253PubMedCrossRefGoogle Scholar
  97. Laloo R, Kharlukhi L, Jeeva S, Mishra B (2006) Status of medicinal plants in the disturbed and the undisturbed sacred forests of Meghalaya, northeast India: population structure and regeneration efficacy of some important species. Curr Sci 90:225–232Google Scholar
  98. Lebovitz HE, Banerji MA (2004) Treatment of insulin resistance in diabetes mellitus. Eur J Pharmacol 490:135–146PubMedCrossRefGoogle Scholar
  99. Lee JH, Yang SH, JM O, Lee MG (2010) Pharmacokinetics of drugs in rats with diabetes mellitus induced by alloxan or streptozocin: comparison with those in patients with type I diabetes mellitus. J Pharm Pharmacol 62:1–23PubMedCrossRefGoogle Scholar
  100. Lehtovirta M, Pietiläinen K, Levälahti E, Heikkilä K, Groop L, Silventoinen K, Koskenvuo M, Kaprio J (2010) Evidence that BMI and type 2 diabetes share only a minor fraction of genetic variance: a follow-up study of 23,585 monozygotic and dizygotic twins from the Finnish twin cohort study. Diabetologia 53:1314–1321PubMedCrossRefGoogle Scholar
  101. Leiter EH (2009) Selecting the “right” mouse model for metabolic syndrome and type 2 diabetes research. Type 2 diabetes: methods and protocols 1–17Google Scholar
  102. Leiter EH, Reifsnyder PC (2004) Differential levels of diabetogenic stress in two new mouse models of obesity and type 2 diabetes. Diabetes 53:S4–S11PubMedCrossRefGoogle Scholar
  103. Lenzen S, Munday R (1991) Thiol-group reactivity, hydrophilicity and stability of alloxan, its reduction products and its N-methyl derivatives and a comparison with ninhydrin. Biochem Pharmacol 42:1385–1391PubMedCrossRefGoogle Scholar
  104. Lenzen S, Tiedge M, Elsner M, Lortz S, Weiss H, Jörns A, Klöppel G, Wedekind D, Prokop CM, Hedrich H (2001) The LEW. 1AR1/Ztm-iddm rat: a new model of spontaneous insulin-dependent diabetes mellitus. Diabetologia 44:1189–1196PubMedCrossRefGoogle Scholar
  105. Lewis W, Elvin Lewis M (1977) Medical botany. Plants affecting man’s health. xviii+ 516pp. illustr. Ex. Science 196:1238Google Scholar
  106. Like AA, Rossini AA (1976) Streptozotocin-induced pancreatic insulitis: new model of diabetes mellitus. Science 193:415–417PubMedCrossRefGoogle Scholar
  107. Lin Y, Sun Z (2010) Current views on type 2 diabetes. J Endocrinol 204:1–11PubMedCrossRefGoogle Scholar
  108. Lindström P (2007) The physiology of obese-hyperglycemic mice [ob/ob mice]. Sci World J 7:666–685CrossRefGoogle Scholar
  109. Liu H, Qiu N, Ding H, Yao R (2008) Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res Int 41:363–370CrossRefGoogle Scholar
  110. Lukic ML, Stošic-Grujicic S, Shahin A (1998) Effector mechanisms in low-dose streptozotocin-induced diabetes. J Immunol Res 6:119–128Google Scholar
  111. Lukivskaya O, Lis R, Egorov A, Naruta E, Tauschel HD, Buko VU (2004) The protective effect of ursodeoxycholic acid in alloxan-induced diabetes. Cell Biochem Funct 22:97–103PubMedCrossRefGoogle Scholar
  112. Madhumitha G, Saral AM (2009) Free radical scavenging assay of thevetia nerüfolia leaf extracts. Asian J Chem 21:2468–2470Google Scholar
  113. Mandal B, Maity C (1986) Hypoglycemic action of karanjin. Acta Physiol Pharmacol Bulg 12:42–46PubMedGoogle Scholar
  114. Masiello P, Broca C, Gross R, Roye M, Manteghetti M, Hillaire-Buys D, Novelli M, Ribes G (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229PubMedCrossRefGoogle Scholar
  115. Mathews CE, Langley SH, Leiter EH (2002) New mouse model to study islet transplantation in insulin-dependent diabetes mellitus. Transplantation 73:1333–1336PubMedCrossRefGoogle Scholar
  116. Mathis D, Vence L, Benoist C (2001) β-cell death during progression to diabetes. Nature 414:792–798PubMedCrossRefGoogle Scholar
  117. Matveyenko AV, Butler PC (2006) Islet amyloid polypeptide (IAPP) transgenic rodents as models for type 2 diabetes. ILAR J 47:225–233PubMedCrossRefGoogle Scholar
  118. Meera B, Kumar S, Kalidhar S (2003) A review of the chemistry and biological activity of Pongamia pinnata. J Med Aromat Plant Sci 2003:441–465Google Scholar
  119. Mirunalini S, Krishnaveni M (2010) Therapeutic potential of Phyllanthus emblica (amla): the ayurvedic wonder. J Basic Clin Physiol Pharmacol 21:93–105PubMedCrossRefGoogle Scholar
  120. Misra P, Misra G, Nigam S, Mitra C (1971) Constituents of Diospyros peregrina fruit and seed. Phytochemistry 10:904–905CrossRefGoogle Scholar
  121. Mitchell A (1974) A field guide to the trees of Britain and northern Europe. Collins, London. 0-00-212035-6Google Scholar
  122. Mordes JP, Bortell R, Blankenhorn EP, Rossini AA, Greiner DL (2004) Rat models of type 1 diabetes: genetics, environment, and autoimmunity. ILAR J 45:278–291PubMedCrossRefGoogle Scholar
  123. Muller YD, Golshayan D, Ehirchiou D, Wyss JC, Giovannoni L, Meier R, Serre-Beinier V, Yung GP, Morel P, Bühler LH (2011) Immunosuppressive effects of streptozotocin-induced diabetes result in absolute lymphopenia and a relative increase of T regulatory cells. Diabetes 60:2331–2340PubMedPubMedCentralCrossRefGoogle Scholar
  124. Nagaraju K (1992) Biochemical studies on some medicinal plants of Rayalaseema regionGoogle Scholar
  125. Nagaraju N, Rao K (1989) Folk–medicine for diabetes from rayalaseema of andhra pradesh. Anc Sci Life 9:31PubMedPubMedCentralGoogle Scholar
  126. Nerup J, Mandrap-Poulsen T, Helqvist S, Andersen H, Pociot F, Reimers J, Cuartero B, Karlsen A, Bjerre U, Lorenzen T (1994) On the pathogenesis of IDDM. Diabetologia 37:S82–S89PubMedCrossRefGoogle Scholar
  127. Noda K, Melhorn MI, Zandi S, Frimmel S, Tayyari F, Hisatomi T, Almulki L, Pronczuk A, Hayes K, Hafezi-Moghadam A (2010) An animal model of spontaneous metabolic syndrome: Nile grass rat. FASEB J 24:2443–2453PubMedPubMedCentralCrossRefGoogle Scholar
  128. Nwangwa EK (2012) Antifertility effects of ethanolic extract of Xylopia Aethiopica on male reproductive organ of wistar rats. Am J Med Sci 2:12–15Google Scholar
  129. Nwozo SO, Orojobi BF, Adaramoye OA (2011) Hypolipidemic and antioxidant potentials of Xylopia aethiopica seed extract in hypercholesterolemic rats. J Med Food 14:114–119PubMedCrossRefGoogle Scholar
  130. O’Connell BS (2001) Complementary and integrative medicine: emerging therapies for diabetes, part 2: preface. Diabetes Spectr 14:196–197CrossRefGoogle Scholar
  131. Oh MJ, Hamid MA, Ngadiran S, Seo YK, Sarmidi MR, Park CS (2011) Ficus deltoidea (Mas cotek) extract exerted anti-melanogenic activity by preventing tyrosinase activity in vitro and by suppressing tyrosinase gene expression in B16F1 melanoma cells. Arch Dermatol Res 303:161–170PubMedCrossRefGoogle Scholar
  132. Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree database: a tree species reference and selection guide version 4.0. World Agroforestry Centre ICRAF, NairobiGoogle Scholar
  133. Osinubi A, Enye L, Adesiyun A, Ajayi G (2008) Comparative effects of three herbs and standard hypoglycaemic agents on blood glucose in normoglycaemic, hyperglycaemic and alloxan-induced diabetic male rats. Afr J Endocrinol Metab 7:5–9Google Scholar
  134. Östenson CG, Efendic S (2007) Islet gene expression and function in type 2 diabetes; studies in the Goto-Kakizaki rat and humans. Diabetes Obes Metab 9:180–186PubMedCrossRefGoogle Scholar
  135. Palani S, Raja S, Venkadesan D, Karthi S, Sakthivel K, Kumar BS (2009) Antioxidant activity and hepatoprotective potential of Terminalia Pallida. Arch Appl Sci Res 1:18–28Google Scholar
  136. Panda SK, Kbaliquzzama M, Agrahari AK (2010) Evaluation of psychopharmacological activity of methanolic extract of Trapa Natans L. Var. Bispinosa Roxb. Roots. Adv. Pharmacol Toxicol 11:71Google Scholar
  137. Parekh J, Chanda S (2007) In vitro antimicrobial activity of Trapa Natans L. fruit rind extracted in different solvents. Afr J Biotechnol 6Google Scholar
  138. Parekh J, Chanda S (2008) In vitro antifungal activity of methanol extracts of some Indian medicinal plants against pathogenic yeast and moulds. Afr J Biotechnol 7:4349–4353Google Scholar
  139. Parvathi S, Kumar V (2002) Studies on chemical composition and utilization of the wild edible vegetable athalakkai (Momordica Tuberosa). Plant Foods Hum Nutr 57:215–222PubMedCrossRefGoogle Scholar
  140. Patel R, Shervington A, Pariente JA, MARTINEZ-BURGOS MA, Salido GM, Adeghate E, Singh J (2006) Mechanism of exocrine pancreatic insufficiency in Streptozotocin-induced type 1 diabetes mellitus. Ann N Y Acad Sci 1084:71–88PubMedCrossRefGoogle Scholar
  141. Patterson CC, Dahlquist GG, Gyürüs E, Green A, Soltész G, Group ES (2009) Incidence trends for childhood type 1 diabetes in Europe during 1989–2003 and predicted new cases 2005–20: a multicentre prospective registration study. Lancet 373:2027–2033PubMedCrossRefGoogle Scholar
  142. Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CT, Hess JF (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nat Genet 13:18–19PubMedCrossRefGoogle Scholar
  143. Pick A, Clark J, Kubstrup C, Levisetti M, Pugh W, Bonner-Weir S, Polonsky KS (1998) Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47:358–364PubMedCrossRefGoogle Scholar
  144. Pinhas-Hamiel O, Zeitler P (2005) The global spread of type 2 diabetes mellitus in children and adolescents. J Pediatr 146:693–700PubMedCrossRefGoogle Scholar
  145. Portha B, Giroix M, Serradas P, Gangnerau M, Movassat J, Rajas F, Bailbe D, Plachot C, Mithieux G, Marie J (2001) Beta-cell function and viability in the spontaneously diabetic GK rat: information from the GK/Par colony. Diabetes 50:S89PubMedCrossRefGoogle Scholar
  146. Pozzilli P, Signore A, Williams AJ, Beales PE (1993) NOD mouse colonies around the world-recent facts and figures. Immunol Today 14:193–196PubMedCrossRefGoogle Scholar
  147. Punitha R, Manoharan S (2006) Antihyperglycemic and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierre flowers in alloxan induced diabetic rats. J Ethnopharmacol 105:39–46PubMedCrossRefGoogle Scholar
  148. Rai M (1995) A review on some antidiabetic plants of India. Anc Sci Life 14:168PubMedPubMedCentralGoogle Scholar
  149. Rao BK, Kesavulu M, Giri R, Rao CA (1999) Antidiabetic and hypolipidemic effects of Momordicacymbalaria Hook. fruit powder in alloxan-diabetic rats. J Ethnopharmacol 67:103–109PubMedCrossRefGoogle Scholar
  150. Rao BK, Kesavulu M, Apparao C (2001) Antihyperglycemic activity of Momordica cymbalaria in alloxan diabetic rats. J Ethnopharmacol 78:67–71PubMedCrossRefGoogle Scholar
  151. Rao BK, Sudarshan PR, Rajasekhar M, Nagaraju N, Rao CA (2003) Antidiabetic activity of Terminaliapallida fruit in alloxan induced diabetic rats. J Ethnopharmacol 85:169–172CrossRefGoogle Scholar
  152. Reaven GM (1988) Role of insulin resistance in human disease. Diabetes 37:1595–1607PubMedCrossRefGoogle Scholar
  153. Richardson SJ, Willcox A, Bone A, Foulis AK, Morgan NG (2009) The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes. Diabetologia 52:1143–1151PubMedCrossRefGoogle Scholar
  154. Sandler S, Swenne I (1983) Streptozotocin, but not alloxan, induces DNA repair synthesis in mouse pancreatic islets in vitro. Diabetologia 25:444–447PubMedCrossRefGoogle Scholar
  155. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14PubMedCrossRefGoogle Scholar
  156. Shibata T, Takeuchi S, Yokota S, Kakimoto K, Yonemori F, Wakitani K (2000) Effects of peroxisome proliferator-activated receptor-α and-γ agonist, JTT-501, on diabetic complications in Zucker diabetic fatty rats. Br J Pharmacol 130:495–504PubMedPubMedCentralCrossRefGoogle Scholar
  157. Shimada A, Maruyama T (2004) Encephalomyocarditis-virus-induced diabetes model resembles “fulminant” type 1 diabetes in humans. Diabetologia 47:1854–1855PubMedCrossRefGoogle Scholar
  158. Shirwaikar A, Rajendran K, Punitha I (2005) Antidiabetic activity of alcoholic stem extract of Coscinium fenestratum in streptozotocin-nicotinamide induced type 2 diabetic rats. J Ethnopharmacol 97:369–374PubMedCrossRefGoogle Scholar
  159. Soladoye M, Chukwuma E, Owa F (2012) An ‘Avalanche’of plant species for the traditional cure of diabetes mellitus in south-western Nigeria. J Nat Prod Plant Resour 2:60–72Google Scholar
  160. Solomon TP, Sistrun SN, Krishnan RK, Del Aguila LF, Marchetti CM, O'Carroll SM, O'Leary VB, Kirwan JP (2008) Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults. J Appl Physiol 104:1313–1319PubMedCrossRefGoogle Scholar
  161. Song WJ, Shah R, Hussain MA (2010) The use of animal models to study stem cell therapies for diabetes mellitus. ILAR J 51:74–81CrossRefGoogle Scholar
  162. Srinivasan K, Ramarao P (2007) Animal models in type 2 diabetes research: an overview. Indian J Med Res 125:451PubMedGoogle Scholar
  163. Srinivasan K, Viswanad B, Asrat L, Kaul C, Ramarao P (2005) Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res 52:313–320PubMedCrossRefGoogle Scholar
  164. Sulaiman M, Hussain M, Zakaria Z, Somchit M, Moin S, Mohamad A, Israf D (2008) Evaluation of the antinociceptive activity of Ficus deltoidea aqueous extract. Fitoterapia 79:557–561PubMedCrossRefGoogle Scholar
  165. Szkudelski T (2001) The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 50:537–546PubMedGoogle Scholar
  166. Taylor SI (1999) Deconstructing type 2 diabetes. Cell 97:9–12PubMedCrossRefGoogle Scholar
  167. Thammanna NRK, Nagaraju N (1990) Medicinal plants of Tirumala. TTD publication, Tirupati, p 55Google Scholar
  168. Thammanna NRK, Rao KN, Chetty KM (1994) Angiospermic wealth of Tirumala. TTD Publication, Tirupati, p 19Google Scholar
  169. Thorburn A, Holdsworth A, Proietto J, Morahan G (2000) Differential and genetically separable associations of leptin with obesity-related traits. Int J Obes 24:742CrossRefGoogle Scholar
  170. Todd JA, Wicker LS (2001) Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 15:387–395PubMedCrossRefGoogle Scholar
  171. Tripathi V, Verma J (2014) Different models used to induce diabetes: a comprehensive review. Int. J Pharm Sci 6:29–32Google Scholar
  172. Uwakwe A (2013) In vitro antisickling effects of Xylopia aethiopica and Monodora myristica. J Med Plants Res 2:119–124Google Scholar
  173. Vijayvargia R, Kumar M, Gupta S (2000) Hypoglycemic effect of aqueous extract of Enicostemma littorale Blume (chhota chirayata) on alloxan induced diabetes mellitus in rats. Indian J Exp Biol 38:781–784PubMedGoogle Scholar
  174. Von Herrath M, Homann D, Gairin J, Oldstone M (1997) Pathogenesis and treatment of virus-induced autoimmune diabetes: novel insights gained from the RIP-LCMV transgenic mouse model. Biochem Soc Trans 25:630–635CrossRefGoogle Scholar
  175. Wang Z, Gleichmann H (1998) GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes 47:50–56PubMedCrossRefGoogle Scholar
  176. Wang J, Wan R, Mo Y, Zhang Q, Sherwood LC, Chien S (2010) Creating a long-term diabetic rabbit model. Exp Diabetes Res 2010:289614PubMedPubMedCentralCrossRefGoogle Scholar
  177. Wang J, Rong X, Um IS, Yamahara J, Li Y (2012) 55-week treatment of mice with the unani and ayurvedic medicine pomegranate flower ameliorates ageing-associated insulin resistance and skin abnormalities. Evid Based Complement Alternat Med 2012:350125PubMedGoogle Scholar
  178. Wang Y, Gd S, Sun J, Sj L, Wang J, Xu X, Ln M (2013) Spontaneous type 2 diabetic rodent models. J Diabetes Res 2013:401723PubMedPubMedCentralGoogle Scholar
  179. Weir GC, Bonner-Weir S (2004) Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes 53:S16–S21PubMedCrossRefGoogle Scholar
  180. Weir G, Marselli L, Marchetti P, Katsuta H, Jung M, Bonner-Weir S (2009) Towards better understanding of the contributions of overwork and glucotoxicity to the β-cell inadequacy of type 2 diabetes. Diabetes Obes Metab 11:82–90PubMedCrossRefGoogle Scholar
  181. Wicker LS, Clark J, Fraser HI, Garner VE, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL (2005) Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 25:29–33PubMedCrossRefGoogle Scholar
  182. Wild SH, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030: response to Rathman and Giani. Diabetes Care 27:2569–2569CrossRefGoogle Scholar
  183. Winzell MS, Ahrén B (2004) The high-fat diet–fed mouse. Diabetes 53:S215–S219PubMedCrossRefGoogle Scholar
  184. Yadav PP, Ahmad G, Maurya R (2004) Furanoflavonoids from Pongamia Pinnata fruits. Phytochemistry 65:439–443PubMedCrossRefGoogle Scholar
  185. Yokoi N, Hayashi C, Fujiwara Y, Wang HY, Seino S (2007) Genetic reconstitution of autoimmune type 1 diabetes with two major susceptibility genes in the rat. Diabetes 56:506–512PubMedCrossRefGoogle Scholar
  186. Yoon JW, Jun HS (2001) Cellular and molecular pathogenic mechanisms of insulin-dependent diabetes mellitus. Ann N Y Acad Sci 928:200–211PubMedCrossRefGoogle Scholar
  187. Yoshida S, Tanaka H, Oshima H, Yamazaki T, Yonetoku Y, Ohishi T, Matsui T, Shibasaki M (2010) AS1907417, a novel GPR119 agonist, as an insulinotropic and β-cell preservative agent for the treatment of type 2 diabetes. Biochem Biophys Res Commun 400:745–751PubMedCrossRefGoogle Scholar
  188. Zakaria Z, Hussain M, Mohamad A, Abdullah F, Sulaiman M (2012) Anti-inflammatory activity of the aqueous extract of Ficus Deltoidea. Biol Res Nurs 14:90–97PubMedCrossRefGoogle Scholar
  189. ZHANG H, JM ZDOLSEK, UT BRUNK (1992) Alloxan cytotoxicity involves lysosomal damage. APMIS 100:309–316PubMedCrossRefGoogle Scholar
  190. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432PubMedCrossRefGoogle Scholar
  191. Zhang W, Kamiya H, Ekberg K, Wahren J, Sima AA (2007) C-peptide improves neuropathy in type 1 diabetic BB/Wor-rats. Diabetes Metab Res Rev 23:63–70PubMedCrossRefGoogle Scholar
  192. Zhou C, Pridgen B, King N, Xu J, Breslow JL (2011) Hyperglycemic Ins2AkitaLdlr−/− mice show severely elevated lipid levels and increased atherosclerosis: a model of type 1 diabetic macrovascular disease. J Lipid Res 52:1483–1493PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiotechnologySchool of Biosciences and Technology, Vellore Institute of TechnologyVelloreIndia
  2. 2.Department of Biomedical SciencesSchool of Biosciences and Technology, Vellore Institute of TechnologyVelloreIndia

Personalised recommendations