Total Synthesis of Natural Products Existence in Fruits and Vegetables

  • Nasireddy Seshadri Reddy
  • S. Mohana RoopanEmail author


This book chapter scrutinizes the total synthesis of natural products extricate from fruits and vegetables and its biological activities allied to certain diseases. Generally, natural products are extricated from plants and their products. Which render nutrition, phytochemicals, vitamins, fibers, and minerals etc.., these are manifest numerous biological activities such as antioxidant, antibacterial, anti-inflammatory, and antifungal activity etc., hostile to chronic diseases like cancer, Alzheimer’s, heart disease, arthritis, and asthma etc., at a certain level, and gift with good health. Natural products are present in the free form or associated with glycosides in little quantity, sometimes difficult to isolated in pure form. Therefore, total synthesis plays a major role in the current engrossment, synthesis and its study allied to biological activities.


Total synthesis Frutis Flavonoids Phenolic compounds Vitamins 



The authors thank Vellore Institute of Technology, Vellore for providing infrastructure, library and research facility.


  1. Adam W, Prechtl F (1991) Highly efficient hydroxylation of carbonyl compounds with dimethyldioxirane. Chem Ber 124:2369–2375CrossRefGoogle Scholar
  2. Adewusi SRA, Howard BJ (1993) Carotenoids in cassava: comparison of open-column and HPLC methods of analysis. J Sci Food Agric 62(4):375–383CrossRefGoogle Scholar
  3. Ajila CM, Prasada RUJ (2008) Determination of carotenoids and their esters in fruits of Lycium Barbarum Linnaeus by HPLC-DAD-APCI-MS. J Pharm Biomed Anal 47(4–5):812–818Google Scholar
  4. Alali FQ, Liu XX, McLaughlin JL (1999) Annonaceous acetogenins: recent progress. J Nat Prod 62:504–540PubMedCrossRefGoogle Scholar
  5. Alghasham AA (2013) Cucurbitacin-a promising target for cancer therapy. Int J Health Sci 7(1):77–89CrossRefGoogle Scholar
  6. Aliev G, Obrenovich ME, Reddy VP, Shenk JC, Moreira PI, Nunomura A, Zhu X, Smith MA, Perry G (2008) Antioxidant therapy in Alzheimer’s disease: theory and practice. Mini-Rev Med Chem 8:1395–1406PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alrawaiq NS, Abdullah A (2014) A review of flavonoid quercetin: metabolism, bioactivity, and antioxidant properties. Int J PharmTech Res 6(3):933–941Google Scholar
  8. Anupama N, Madhumitha G (2017) Green synthesis and catalytic application of silver nanoparticles using Carissa Carandas fruits. Inorg Nano-Met Chem 47(1):116–120CrossRefGoogle Scholar
  9. Appel R (1975) Tertiary phosphane/tetrachloromethane, a versatile reagent for chlorination, dehydration, and P-N linkage. Angew Chem Int Ed 14:801–811CrossRefGoogle Scholar
  10. Ballesteros JF, Sanz MJ, Ubeda A, Miranda MA, Iborra S, Paya M, Alcaraz M (1995) Synthesis and pharmacological evaluation of 2-hydroxychalcones and flavones as inhibitors of inflammatory mediators generation. J Med Chem 38(14):2794–2797PubMedCrossRefGoogle Scholar
  11. Bentz AB (2009) A review of Quercetin: chemistry, antioxidant properties, and bioavailability. J Young Investig 19(10):1–14Google Scholar
  12. Brown HC, Rangaishenvi MV (1988) Organoboranes: LI. Convenient procedures for the recovery of pinanediol in asymmetric synthesis via one-carbon homologation of boronic esters. J Organomet Chem 358:15–30CrossRefGoogle Scholar
  13. Carda M, Rodriguez S, Gonzalez F, Castillo E, Villanueva A, Marco JA (2002) Stereoselective synthesis of the naturally occurring lactones (−)-Osmundalactone and (−)-Muricatacine using ring-closing metathesis. Eur J Org Chem 2002:2649–2655CrossRefGoogle Scholar
  14. Chan JC, Chiu MH, Nie RL, Cordel GA, Qiu SX (2005) Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat Prod Rep 22:386–399CrossRefGoogle Scholar
  15. Chan J-C, Zhang G-H, Zhang Z-Q, Qiu M-H, Zheng Y-T, Yang L-M, Yu K-B (2008) Octanorcucurbitane and Cucurbitane Triterpenoids from the tubers of Hemsleya endecaphylla with HIV-1 inhibitory activity. J Nat Prod 71(1):153–155CrossRefGoogle Scholar
  16. Cheng YB et al (2010a) Arisandilactone A, a new triterpenoid from the fruits of Schisandra Arisanensis. Org Lett 12:1016–1019PubMedCrossRefGoogle Scholar
  17. Cheng YB et al (2010b) Nortriterpene lactones from the fruits of Schisandra Arisanensis. J Nat Prod 73:1228–1233PubMedCrossRefGoogle Scholar
  18. Cherepy NJ, Smestad GP, Michael G, Zhang JZ (1997) Ultrafast electron injection: implication for a Photoelectrochemical cell utilizing an Anthocyanin dye-sensitized TiO2 Nanocrystalline electrode. J Phys Chem B 101(45):9342–9351CrossRefGoogle Scholar
  19. Choi S, Koo S (2005) Efficient synthesis of the Keto-carotenoids Canthaxanthin, Astaxanthin, and Astacene. J Org Chem 70(8):3328–3331PubMedCrossRefGoogle Scholar
  20. Chun OK, Chung SJ, Song WO (2007) Estimated dietary flavonoid intake and major food sources of U. S. Adults. J Nutr 137(5):1244–1252PubMedCrossRefGoogle Scholar
  21. Cossy J, Balnchard N, Hamel C, Meyer C (1999) Diastereoselective hydroboration of isopropenyl cyclopropanes. J Org Chem 64:2608–2609PubMedCrossRefGoogle Scholar
  22. Du Y, Wei G, Linhardt RJ (2004) Total synthesis of Quercetin 3-Sophorotrioside. J Org Chem 69:2206–2209PubMedCrossRefGoogle Scholar
  23. Duggal JK, Singh M, Attri N, Singh PP, Ahmed N, Pahwa S, Molnar J, Singh S, Khosla S, Arora R (2010) Effect of niacin therapy on cardiovascular outcomes in patients with coronary artery disease. J Cardiovasc Pharmacol Ther 15(2):158–166PubMedCrossRefGoogle Scholar
  24. Escandell JM, Kaler P, Recio MC, Sasazuki T, Shirasawa S, Augenlicht L, Rios JL, Klampfer L (2008) Activated kRas protects colon cancer cells from cucurbitacin induced apoptosis: the role of p53 and p21. Biochem Pharmacol 76(2):198–207PubMedPubMedCentralCrossRefGoogle Scholar
  25. Escandell JM, Recio MC, Manez S, Giner RM, Cerda-Nicolas M, Gil-Benso R, Rios JL (2007) Dihydrocucurbitacin B inhibits delayed type hypersensitivity reactions by suppressing lymphocyte proliferation. J Pharmacol Exp Ther 322:1261–1268PubMedCrossRefGoogle Scholar
  26. Evans DA, Chapman KT, Carreira EM (1988) Directed reduction of .Beta.-hydroxy ketones employing tetramethylammonium triacetoxyborohydride. J Am Chem Soc 110(11):3560–3578CrossRefGoogle Scholar
  27. Fassett RG, Coombes JS (2009) Astaxanthin, oxidative stress, inflammation and cardiovascular diseases. Futur Cardiol 5(4):333–342CrossRefGoogle Scholar
  28. Fatiadi A, Schaffer R (1974) An improved procedure for the synthesis of DL-4- hydroxy-3-methoxymandelic acid (DL-“Vanillyl”-mandelic acid, VMA). J Res Natl Bur Stand 78A(3):411–412CrossRefGoogle Scholar
  29. Figueroa R, Hsung RP, Guevarra CC (2007) An enantioselective total synthesis of (+)-aigialospirol. Org Lett 9(23):4857–4859PubMedCrossRefGoogle Scholar
  30. Fowsiya J, Madhumitha G, Al-Dhabi NA, Arasu MV (2016) Photocatalytic degradation of Congo red using Carissa Edulis extract capped zinc oxide nanoparticles. J Photochem Photobiol B 162:395–401PubMedCrossRefGoogle Scholar
  31. Fowsiya J, Madhumitha G (2017) Preliminary phytochemical analysis, Antioxidant and cytotoxicity test of Vahl dried fruits. IOP Conf Series: Mater Sci Eng 263:022018-022035Google Scholar
  32. Ganem B, Fortunato JM (1975) Unique methodology for the conjugative reduction and reductive alkylation of α,β-unsaturated carboxylic esters. J Org Chem 40:2846–2848CrossRefGoogle Scholar
  33. Garber SB, Kingsbury JS, Gray BL, Hoveyda AH (2000) Efficient and recyclable monomeric and dendritic Ru-based metathesis catalysts. J Am Chem Soc 122:8168–8179CrossRefGoogle Scholar
  34. Gardner JN, Carlon FE, Gnoj O (1968) One-step procedure for the preparation of tertiary α-ketols from the corresponding ketones. J Org Chem 33:3294–3299PubMedCrossRefGoogle Scholar
  35. Gogoi S, Argade NP (2006) A facile chemoenzymatic approach to natural cytotoxic ellipsoidone A and natural ellipsoidone B. Tetrahedron 62(11):2715–2720CrossRefGoogle Scholar
  36. Goh SS et al (2015) Total synthesis of (+)-Rubriflordilactone A. Angew Chem Int Ed Engl 54:12618–12621PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gonzalez MC, Tormo JR, Bermejo A, Zafra-Polo MC, Estornell E, Cortes D (1997) Rollimembrin, a movel acetogenin inhibitor of mammalian mitochondrial complex 1. Bioorg Med Chem Lett 7:1113–1118CrossRefGoogle Scholar
  38. Graziose R, Grace MH, Rathinasabapathy T, Rojas-Silva P, Dekock C, Poulev A, Lila MA, Smith P, Raskin I (2013) Antiplasmodial activity of cucurbitacin glycosides from Datisca Glomerata (C. Presl) Baill. Phytochemistry 87:78–85PubMedCrossRefGoogle Scholar
  39. Hemalatha K, Madhumitha G, Kajbafvala A, Anupama N, Sompalle R, Roopan S (2013) Function of nanocatalyst in chemistry of organic compounds revolution: An overview. J Nanomater 2013:341015CrossRefGoogle Scholar
  40. Hemalatha K, Madhumitha G, Vasavi CS, Munusami P (2015) 2,3-dihydroquinazolin-4(1H)-ones: visible light mediated synthesis, solvatochromism and biological activity. J Photochem Photobiol B 143:139–147PubMedCrossRefGoogle Scholar
  41. Hocking MB (1997) Vanillin: synthetic flavoring from spent sulfite liquor. J Chem Ed 74(9):1055–1059CrossRefGoogle Scholar
  42. Hollman PC, Katan MB (1999) Dietary flavonoids: intake, health effects, and bioavailability. Food Chem Toxicol 37(9–10):937–942PubMedCrossRefGoogle Scholar
  43. Hwu JR, Wetzel JM (1985) The trimethylsilyl cationic species as a bulky proton. Application to chemoselective dioxolanation. J Org Chem 50:3946–3948CrossRefGoogle Scholar
  44. Ireland RE, Mueller RH, Willard AK (1976) The ester enolate Claisen rearrangement. Stereochemical control through stereoselective enolate formation. J Am Chem Soc 98(10):2868–2877CrossRefGoogle Scholar
  45. Irvine FR (1961) The effect of indigenous growth media on Allanblackia parviflora A. Chev in Ghana. Woody plants of Ghana. Oxford University Press, London, pp 143–144Google Scholar
  46. Justesen U, Knuthsen P (2001) Composition of flavonoids in fresh herbs and calculation of flavonoid intake by use of herbs in traditional Danish dishes. Food Chem 73(2):245–250CrossRefGoogle Scholar
  47. Kapoor S (2013) Cucurbitacin B and its rapidly emerging role in the management of systematic malignancies besides lung carcinomas. Cancer Biother Radiopharm 28(4):359–359PubMedCrossRefGoogle Scholar
  48. Kelsey NA, Wilkins HM, Linseman DA (2010) Nutraceutical antioxidants as novel neuroprotective agents. Molecules 15(11):7792–7814PubMedPubMedCentralCrossRefGoogle Scholar
  49. Kidd P (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and anti-aging potential. Altern Med Rev 16(4):355–364PubMedGoogle Scholar
  50. Kirkland JB (2012) Niacin requirements for genomic stability. Mutat Res 733(1–2):14–20PubMedCrossRefGoogle Scholar
  51. Kita Y, Kitagaki S, Yoshida Y, Mihara S, Fang DF, Kondo M, Okamoto S, Imai R, Akai S, Fujioka H (1997) Acid-promoted rearrangement of cyclic α,β-Epoxy Acylates: Stereoselective synthesis of Spirocyclanes and quaternary carbon centers. J Org Chem 62(15):4991–4997CrossRefGoogle Scholar
  52. Kubo M, Okada C, Huang J-M, Harada K, Hioki H, Fukuyama Y (2009) Novel Pentacyclic Seco-Prezizaane-type Sesquiterpenoids with Neurotrophic properties from illicium jiadifengpi. Org Lett 11(22):5190–5193PubMedCrossRefGoogle Scholar
  53. Kuhn R, Weygand F, Moller EF, Ber D (1943) Uber einen Antagonisten des Lactoflavins. Ber Dtsch Chem Ges 76B:1044–1051CrossRefGoogle Scholar
  54. Kumar R, Mohanakrishna D, Sharma A, Kaushik NK, Kalia K, Sinha AK, Sahal D (2010) Reinvestigation of structure-activity relationship of methoxylated chalcones as antimalarials: synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural β-asarone. Eur J Med Chem 45(11):5292–5301PubMedCrossRefGoogle Scholar
  55. Kurowska EM, Manthey JA (2004) Hypolipidemic effects and absorption of citrus polymethoxylated flavones in hamsters with diet-induced hypercholesterolemia. J Agric Food Chem 52(10):2879–2886PubMedCrossRefGoogle Scholar
  56. Kurowska EM, Manthey JA, Casaschi A, Theriault AG (2004) Modulation of HepG2 cells net apolipoprotein B secretion by the citrus polymethoxyflavone, tangeretin. Lipids 39(2):143–151PubMedCrossRefGoogle Scholar
  57. Lang KL, Silva IT, Zimmermann LA, Machado VR, Teixeira MR, Galetti MA, Palermo JA, Cabrera GM, Bernardes LSC, Simoes CO, Schenkel EP, Caro MSB, Duran FJ (2012) Synthesis and cytotoxic activity evaluation of dihydrocucurbitacin B and cucurbitacin B derivatives. Bioorg Med Chem 20(9):3016–3030PubMedCrossRefGoogle Scholar
  58. Lang KL, Silva IT, Machado VR, Zimmermann LA, Caro MSB, Simoes CMO, Schenkel EP, Duran FJ, Bernardes LSC, Melo EB (2014) Multivariate SAR and QSAR of cucurbitacin derivatives as cytotoxic compounds in a human lung adenocarcinoma cell line. J Mol Graph Model 48:70–79PubMedCrossRefGoogle Scholar
  59. Li WDZ, Yang JH (2004) A novel synthesis of functionalized allylsilanes. Org Lett 6:1849–1852PubMedCrossRefGoogle Scholar
  60. Li J, Yang P, Yao M, Deng J, Li A (2014) Total synthesis of Rubriflordilactone A. J Am Chem Soc 136:16477–16480PubMedCrossRefGoogle Scholar
  61. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485SPubMedCrossRefGoogle Scholar
  62. Losi A (2007) Flavin-based blue-light Photosensors: a Photobiophysics update. Photochem Photobiol 83:1283–1300PubMedCrossRefGoogle Scholar
  63. Mander LN, Sethi SP (1983) Regioselective synthesis of β-keto esters from lithium enolates and methyl cyanoformate. Tetrahedron Lett 24:5425–5428CrossRefGoogle Scholar
  64. Margalith PZ (1999) Production of Ketocarotenoids by microalgae. Appl Microbiol Biotechnol 51(4):431–438PubMedCrossRefGoogle Scholar
  65. Marshall JA, Jiang H (1998) Total synthesis of the threo, trans, threo-mono-tetrahydrofuran annonaceous acetogenin lonifolicin. Tetrahedron Lett 39:1493–1496CrossRefGoogle Scholar
  66. Martin JC, Arhart RJ (1971) Sulfuranes. III. Reagent for the dehydration of alcohols. J Am Chem Soc 93:4327–4329CrossRefGoogle Scholar
  67. Mattarei A, Sassi N, Durante C, Biasutto L, Sandona G, Marotta E, Garbisa S, Gennaro A, Paradisi C, Zoratti M (2011) Redox properties and cytotoxicity of synthetic isomeric Mitochondriotropic derivatives of the natural polyphenol Quercetin. Eur J Org Chem 2011(28):5577–5586CrossRefGoogle Scholar
  68. Meyer HJ, Norris DM (1967) Vanillin and Syringaldehyde as attractants for Scolytus Multistriatus (Coleoptera: Scolytidae). Ann Entomol Soc Am 60(4):858–859CrossRefGoogle Scholar
  69. Michaelis L, Schubert MP, Smythe CV (1936) Potentiometric study of the flavins. J Biol Chem 116(2):587–607Google Scholar
  70. Milstein D (1982) Mild, low-pressure carbonylation of (.pi.-allyl)palladium complexes. Organomet 1:888–890CrossRefGoogle Scholar
  71. Miro M (1995) Cucurbitacins and their pharmacological effects. Phytother Res 9:159–168CrossRefGoogle Scholar
  72. Myint SH, Cortes D, Laurens A, Hocquemiller R, Leboeuf M, Cave A, Cotte J, Quero AM (1991) Solamin, a cytotoxic mono-tetrahydrofuranic Y-lactone acetogenin from Annona Muricata seeds. Phytochemistry 30:3335–3338CrossRefGoogle Scholar
  73. Naf R, Velluz A, Decorzant R, Naf F (1991) Structure and synthesis of two novel ionone-type compounds identified in quince brandy (Cydonia oblonga Mil.) Tetrahedron Lett 32:753–756CrossRefGoogle Scholar
  74. Nowakowska Z (2007) A review of anti-infective and anti-inflammatory chalcone. Eur J Med Chem 42(2):125–137PubMedCrossRefGoogle Scholar
  75. Peterson DJ (1968) Carbonyl olefination reaction using silyl-substituted organometallic compounds. J Org Chem 33:780–784CrossRefGoogle Scholar
  76. Prakash R, Gandotra S, Singh LK, Das B, Lakra A (2008) Rapid resolution of delusional parasitosis in pellagra with niacin augmentation therapy. Gen Hosp Psychiatry 30(6):581–584PubMedCrossRefGoogle Scholar
  77. Pryor WA (2000) Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med 28(1):141–164PubMedCrossRefGoogle Scholar
  78. Recio MC, Prieto M, Bonucelli M, Orsi C, Manez S, Giner RM, Cerda-Nicolas M, Rios JL (2004) Anti-inflammatory activity of two Cucurbitacins isolated from Cayaponia tayuya roots. Planta Med 70(5):414–420PubMedCrossRefGoogle Scholar
  79. Reimer KL (1876) Ueber eine Neue Bildungsweise aromatischer Aldehyde. Ber Dtsch Chem Ges 9(1):423–424CrossRefGoogle Scholar
  80. Renaud S, De LM (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523–1526PubMedCrossRefGoogle Scholar
  81. Rieser MJ, Kozlowski JF, Wood KV, McLaughlin JL (1991) Muricatacin: a simple biologically active acetogenin derivatives from the seeds of Annona Muricata (Annonaceae). Tetrahedron Lett 32:1137–1140CrossRefGoogle Scholar
  82. Saksena AK, Mangiaracina P (1983) Recent studies on veratrum alkaloids: a new reaction of sodium triacetoxyborohydride [NaBH(OAc)3]. Tetrahedron Lett 24(3):273–276CrossRefGoogle Scholar
  83. Scalbert A, Manach C, Morand C, Remesy C, Jimenez L (2005) Dietary polyphenols and the prevention of diseases. Crit Rev Food Sci Nutr 45:287–306PubMedCrossRefGoogle Scholar
  84. Schmidth RR, Toepfer A (1991) Glycosylation with highly reactive glycosyl donors: efficiency of the inverse procedure. Tetrahedron Lett 32(28):3353–3356CrossRefGoogle Scholar
  85. Scholl M, Grubbs RH (1999) Total synthesis of (−)- and (±)-frontalin via ring-closing metathesis. Tetrahedron Lett 40:1425–1428CrossRefGoogle Scholar
  86. Seifried HE, Anderson DE, Fisher EI, Milner JA (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18(9):567–579PubMedCrossRefGoogle Scholar
  87. Shang Y, Ma Y, Zhou Y, Zhang H, Duan L, Chen H, Zeng J, Zhou Q, Wang S, Gu W, Liu M, Ren J, Gu X, Zhang S, Wang Y, Yasukawa K, Bouwmeester HJ, Qi X, Zhang Z, Lucas WJ, Huang S (2014) Plant science. Biosynthesis, regulation, and domestication of bitterness in cucumber. Science 346(6213):1084–1088PubMedCrossRefGoogle Scholar
  88. Shi YM, Xiao WL, JX P, Sun HD (2015) Triterpenoids from the Schisandraceae Family: an update. Nat Prod Rep 32:367–410PubMedCrossRefGoogle Scholar
  89. Silva DHS, Zhang Y, Santos LA, Bolzani VS, Nair MG (2007) Lipoperoxidation and cyclooxygenase enzymes inhibitory compounds from Iryanthera juruensis. J Agric Food Chem 55:2569–2574PubMedCrossRefGoogle Scholar
  90. Sinha AK, Sharma UK, Sharma N (2008) A comprehensive review on vanilla flavor: extraction, isolation, and quantification of vanillin and other constituents. Int J Food Sci Nutr 59(4):299–326PubMedCrossRefGoogle Scholar
  91. Siqueira JM, Gazzola AC, Farias MR, Volkov L, Rivard N, De Brum-Fernandes AJ, Ribeiro-Do-Valle RM (2009) Evaluation of antitumoral effect of dihydrocucurbitacin-B in both in vitro and in vivo models. Cancer Chemother Pharmacol 64(3):529–538PubMedCrossRefGoogle Scholar
  92. Solankee A, Kapadia K, Ciric M, Doytchinova A, Geronilaki A (2010) Synthesis of some new S-triazine based chalcones and their derivatives as potent antimicrobial agents. Eur J Med Chem 45(2):510–518PubMedCrossRefGoogle Scholar
  93. Stapleton AE (1992) Ultraviolet radiation and plants: burning questions. Plant Cell 4(11):1353–1358PubMedPubMedCentralCrossRefGoogle Scholar
  94. Su Y, Xie J, Wang y HX, Lin X (2010) Synthesis and antitumor activity of new shikonin glycosides. Eur J Med Chem 45:2713–2718PubMedCrossRefGoogle Scholar
  95. Surendra TV, Roopan SM (2016) Photocatalytic and antibacterial properties of phytosynthesized CeO2 NPs using Moringa oleifera peel extract. J Photochem Photobiol B 161:122–128PubMedCrossRefGoogle Scholar
  96. Valente LMM (2004) Cucurbitacins, and their main structural characteristics. Quim Nova 27:944–948CrossRefGoogle Scholar
  97. Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141(2):384–390PubMedPubMedCentralCrossRefGoogle Scholar
  98. Vedejs E, Engler DA, Telschow JE (1978) Transition-metal peroxide reactions. Synthesis of .alpha.-hydroxy carbonyl compounds from enolates. J Org Chem 43:188–196CrossRefGoogle Scholar
  99. Wada L, Ou B (2002) Antioxidant activity and phenolic content of Oregon caneberries. J Agric Food Chem 50(12):3495–3500PubMedCrossRefGoogle Scholar
  100. Wang L, Wang HT, Li YH, Tang PP (2015) Total synthesis of Schilancitrilactones B and C. Angew Chem Int Ed 54:5732–5735CrossRefGoogle Scholar
  101. Wendt D (2015) Packed full of questions: who benefits from dietary supplements? Distillations Magazine 1(3):41–45Google Scholar
  102. Willett WC (2002) Balancing life-style and genomics research for disease prevention. Science 296:695–698PubMedCrossRefGoogle Scholar
  103. Williama JM et al (1995) A new general method for preparation of N-methoxy-N-methylamides. Application indirect conversion of an ester to a ketone. Tetrahedron Lett 36:5461–5464Google Scholar
  104. Wolfe KL, Kang XM, He XJ, Dong M, Zhang QY, Liu RH (2008) Cellular antioxidant activity of common fruits. J Agric Food Chem 56:8418–8426PubMedCrossRefGoogle Scholar
  105. Wu X, Beecher GR, Holden JM et al (2006) Concentrations of anthocyanins in common foods in the United States and estimation of normal consumption. J Agric Food Chem 54(11):4069–4075PubMedCrossRefGoogle Scholar
  106. Xiao WL, Li RT, Huang SX, JX P, Sun HD (2008) Triterpenoids from the Schisandraceae family. Nat Prod Rep 25:871–891PubMedCrossRefGoogle Scholar
  107. Xiao Q et al (2011) Diastereoselective total synthesis of (±)-Schindilactone A. Angew Chem Int Ed 50:7373–7377CrossRefGoogle Scholar
  108. Xue S, Liu YK, Li LZ, Guo QX (2005) Zinc-mediated ring-expansion and chain-extension reactions of β-keto esters. J Org Chem 70:8245–8247PubMedCrossRefGoogle Scholar
  109. Yang CG, Reich NW, Shi Z, He C (2005) Intramolecular addition of alcohols and carboxylic acids to inert olefins catalyzed by silver (I) triflate. Org Lett 7:4553–4556PubMedCrossRefGoogle Scholar
  110. Yonemura S, Doane S, Keil S, Goodrich R, Pidcoke H, Cardoso M (2017) Improving the safety of whole blood-derived transfusion products with a riboflavin-based pathogen reduction technology. Blood Transfus 15(4):357–364PubMedPubMedCentralGoogle Scholar
  111. You L et al (2015) Asymmetric total synthesis of Propindilactone G. J Am Chem Soc 137:10120–10123PubMedCrossRefGoogle Scholar
  112. Zafra-Polo MC, Gonzalez MC, Estornell E, Sahpaz S, Cortes D (1996) Acetogenins from Annonaceae, inhibitors of mitochondrial complex 1. Phytochemistry 42:253–271PubMedCrossRefGoogle Scholar
  113. Zafra-Polo MC, Figadere B, Gallardo T, Tormo JR, Cortes D (1998) Natural acetogenins from Annonaceae, synthesis, and mechanism of action. Phytochemistry 48:1087–1117CrossRefGoogle Scholar
  114. Zeng L, Ye Q, Oberlies NH, Shi G, ZM G, He K, McLaughlin JL (1996) Recent advances in Annonaceous acetogenins. Nat Prod Rep 13:275–306PubMedCrossRefGoogle Scholar
  115. Zhang Y et al (2014) Biosynthesis, regulation, and domestication of bitterness in cucumber. Sci 346(6213):1084–1088CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Chemistry of Heterocycles & Natural Product Research Laboratory, School of Advanced SciencesVellore Institute of TechnologyVelloreIndia

Personalised recommendations